Skip to main content

Collaborative Autonomous Surveys in Marine Environments Affected by Oil Spills

  • Chapter
Cooperative Robots and Sensor Networks 2014

Part of the book series: Studies in Computational Intelligence ((SCI,volume 554))

Abstract

This chapter presents results on collaborative autonomous surveys using a fleet of heterogeneous autonomous robotic vehicles in marine environments affected by oil spills. The methods used for the surveys are based on a class of path following controllers with mathematically proven convergence and robustness. Use of such controllers enables easy mission planning for autonomous marine surveys where the paths consist of lines and curves. The control algorithm uses simple dynamic models and simple control laws and thus enables quick deployment of a fleet of autonomous vehicles to collaboratively survey large areas. This enables using a mobile network to survey an area where the different member nodes may have slightly different capabilities. A mapping algorithm used to reconcile data from heterogeneous marine vehicles on multiple different paths is also presented. Vehicles with heterogeneous dynamics are thus used to aid in the reconstruction of a time varying field. The algorithms used were tested, mainly on student-built marine robots that collaboratively surveyed a coastal lagoon in Grand Isle, Louisiana that was polluted by crude oil during the Deepwater Horizon oil spill. The results obtained from these experiments show the effectiveness of the proposed methods for oil spill surveys and also provide guidance for mission designs for future collaborative autonomous environmental surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geen, M.: Advances in Marine Survey Products and Platforms. In: OCEANS 2007-Europe, vol. 1-3, pp. 984–989 (2007)

    Google Scholar 

  2. Hausler, A., Ghabcheloo, R., Kaminer, I., Pascoal, A., Aguiar, A.: Path Planning For Multiple Marine Vehicles. In: OCEANS 2009-Europe, vol. 1 & 2, pp. 423–431 (2009)

    Google Scholar 

  3. Pettersen, K., Egeland, O.: Exponential Stabilization of An Underactuated Surface Vessel. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 1, pp. 967–972 (1996)

    Google Scholar 

  4. Pettersen, K., Lefeber, E.: Way-Point Tracking Control Of Ships. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp. 940–945 (2001)

    Google Scholar 

  5. Do, K., Jiang, Z., Pan, J.: Universal Controllers for Stabilization and Tracking of Underactuated Ships. Systems & Control Letters 47(4), 299–317 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ghommam, J., Mnif, F., Benali, A., Derbel, N.: Nonsingular Serret-Frenet Based Path Following Control for an Underactuated Surface Vessel. Journal of Dynamic Systems, Measurement, and Control 131(2), 021006(8 pages) (2009)

    Google Scholar 

  7. Xiang, X., Lapierre, L., Liu, C., Jouvencel, B.: Path Tracking: Combined Path Following and Trajectory Tracking for Autonomous Underwater Vehicles. In: Proceedings of the International Conference on Intelligent Robots and Systems, pp. 3558–3563 (2011)

    Google Scholar 

  8. Do, K., Pan, J.: Robust Path Following of Underactuated Ships Using Serret-Frenet Frame. In: Proceedings of the American Control Conference, vol. 3, pp. 2000–2005 (2003)

    Google Scholar 

  9. Malisoff, M., Mazenc, F., Zhang, F.: Stability and Robustness Analysis for Curve Tracking Control Using Input-to-State Stability. IEEE Transactions on Automatic Control 57(5), 1320–1326 (2012)

    Article  MathSciNet  Google Scholar 

  10. Pettersen, K., Fossen, T.: Underactuated Dynamic Positioning of A Ship-Experimental Results. IEEE Transactions on Control Systems Technology 8(5), 856–863 (2000)

    Article  Google Scholar 

  11. Zhang, F., Justh, E., Krishnaprasad, P.S.: Boundary Following Using Gyroscopic Control. In: Proceedings of the 43rd IEEE Conference on Decision and Control, vol. 5, pp. 5204–5209 (2004)

    Google Scholar 

  12. Zhang, F., O’Connor, A., Luebke, D., Krishnaprasad, P.S.: Experimental Study of Curvature-Based Control Laws for Obstacle Avoidance. In: Proceedings of 2004 IEEE International Conf. on Robotics and Automation, vol. 4, pp. 3849–3854 (2004)

    Google Scholar 

  13. Kim, J., Zhang, F., Egerstedt, M.: Curve Tracking Control for Autonomous Vehicles With Rigidly Mounted Range Sensors. Journal of Intelligent and Robotic Systems 56(1-2), 177–197 (2009)

    Article  MATH  Google Scholar 

  14. Zhang, F., Fratantoni, D.M., Paley, D., Lund, J., Leonard, N.E.: Control of Coordinated Patterns for Ocean Sampling. International Journal of Control 80(7), 1186–1199 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wu, W., Zhang, F.: Robust Cooperative Exploration With A Switching Strategy. IEEE Transactions on Robotics 28(4), 828–839 (2012)

    Article  Google Scholar 

  16. Wu, W., Zhang, F.: Cooperative Exploration of Level Surfaces of Three Dimensional Scalar Fields. Automatica, the IFAC Journal 47(9), 2044–2051 (2011)

    Article  MATH  Google Scholar 

  17. Dasgupta, P.: A Multiagent Swarming System for Distributed Automatic Target Recognition Using Unmanned Aerial Vehicles. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 38(3), 549–563 (2008)

    Article  Google Scholar 

  18. Boardman, M., Edmonds, J., Francis, K., Clark, C.: Multi-Robot Boundary Tracking With Phase and Workload Balancing. In: Proc. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3321–3326 (2010)

    Google Scholar 

  19. Jin, X., Ray, A.: Coverage Control of Autonomous Vehicles for Oil Spill Cleaning in Dynamic and Uncertain Environments. In: Proc. 2013 American Control Conference (ACC), pp. 2594–2599 (2013)

    Google Scholar 

  20. Johnson, B., Hallin, N., Leidenfrost, H., O’Rourke, M., Edwards, D.: Collaborative Mapping With Autonomous Underwater Vehicles in Low-Bandwidth Conditions. In: OCEANS 2009 - EUROPE, pp. 1–7 (2009)

    Google Scholar 

  21. Carlési, N., Michel, F., Jouvencel, B., Ferber, J.: Generic Architecture For Multi-AUV Cooperation Based on A Multi-Agent Reactive Organizational Approach. In: Proc. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5041–5047 (2011)

    Google Scholar 

  22. Li, H., Popa, A., Thibault, C., Trentini, M., Seto, M.: A Software Framework for Multi-Agent Control of Multiple Autonomous Underwater Vehicles for Underwater Mine Counter-Measures. In: Proc. 2010 International Conference on Autonomous and Intelligent Systems (AIS), pp. 1–6 (2010)

    Google Scholar 

  23. Gustavi, T., Dimarogonas, D.V., Egerstedt, M., Hu, X.: Sufficient Conditions for Connectivity Maintenance and Rendezvous in Leader-Follower Networks. Automatica 46(1), 133–139 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mukhopadhyay, S., Wang, C., Bradshaw, S., Maxon, S., Patterson, M., Zhang, F.: Controller Performance of Marine Robots In Reminiscent Oil Surveys. In: Proc. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 1766–1771 (2012)

    Google Scholar 

  25. Liang, X., Wu, W., Chang, D., Zhang, F.: Real-Time Modelling of Tidal Current for Navigating Underwater Glider Sensing Networks. Procedia Computer Science 10, 1121–1126 (2012)

    Article  Google Scholar 

  26. Patterson, M.R., Sias, J.H.: Modular Autonomous Underwater Vehicle System. U.S. Patent 5, 995, 882 (1999)

    Google Scholar 

  27. Patterson, M.R., Sias, J.H.: Fetch!® Commercial Autonomous Underwater Vehicle: A Modular, Platform-Independent Architecture Using Desktop Personal Computer Technology. In: Ocean Community Conference 1998 Proceedings, Baltimore, MD, vol. 2, pp. 891–897 (1998)

    Google Scholar 

  28. Patterson, M.R.: A Finite State Machine Approach to Layered Command And Control of Autonomous Underwater Vehicles Implemented in G, A Graphical Programming Language. In: Ocean Community Conference 1998 Proceedings, Baltimore, MD, vol. 2, pp. 745–751 (1998)

    Google Scholar 

  29. Malisoff, M., Zhang, F.: Adaptive Control for Planar Curve Tracking Under Controller Uncertainty. Automatica 49(5), 1411–1418 (2013)

    Article  MathSciNet  Google Scholar 

  30. Malisoff, M., Zhang, F.: Robustness of A Class of Three-Dimensional Curve Tracking Control Laws Under Time Delays and Polygonal State Constraints. In: Proc. 2013 American Control Conference (ACC 2013), Washington D.C., USA, pp. 5710–5715 (2013)

    Google Scholar 

  31. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  32. Stachniss, C., Plagemann, C., Lilienthal, A.: Gas Distribution Modeling Using Sparse Gaussian Process Mixtures. Autonomous Robots 26(2-3), 187–202 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayok Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukhopadhyay, S., Wang, C., Patterson, M., Malisoff, M., Zhang, F. (2014). Collaborative Autonomous Surveys in Marine Environments Affected by Oil Spills. In: Koubaa, A., Khelil, A. (eds) Cooperative Robots and Sensor Networks 2014. Studies in Computational Intelligence, vol 554. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55029-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55029-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55028-7

  • Online ISBN: 978-3-642-55029-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics