Skip to main content

Local Structure Preserving Based Subspace Analysis Methods and Applications

  • Chapter
Subspace Methods for Pattern Recognition in Intelligent Environment

Part of the book series: Studies in Computational Intelligence ((SCI,volume 552))

Abstract

Subspace analysis is an effective approach for image representation. Local structure preserving has been widely adopted to learn subspace which reflects the intrinsic attributes of samples. In this chapter, inspired by the idea of local structure preserving, we propose two novel subspace methods for face recognition and image clustering tasks. The first is named Supervised Kernel Locality Preserving Projections (SKLPP) for face recognition task, in which geometric relations are preserved according to prior class-label information and complex nonlinear variations of real face images are represented by nonlinear kernel mapping. The second is a novel probabilistic topic model for image clustering task, named Dual Local Consistency Probabilistic Latent Semantic Analysis (DLC-PLSA), The proposed DLC-PLSA model can learn an effective and robust mid-level representation in the latent semantic space for image analysis. As our model considers both the local image structure and local word consistency simultaneously when estimating the probabilistic topic distributions, the image representations can have more powerful description ability in the learned latent semantic space. The extensive experiments on face recognition and image clustering show that the proposed subspace analysis methods are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transaction on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  2. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  4. Turk, M., Pentland: Pentland Face recognition using eigenfaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

    Google Scholar 

  5. Hyvarinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  6. Comon, P.: Independent component analysis: A new concept. Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  7. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  8. Hoffman, T.: Probabilistic latent semantic analysis. In: Uncertainty in Artificial Intelligence, pp. 289–296 (1999)

    Google Scholar 

  9. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  10. Roweis, S., Saul, L.: Nonlinear dimensionalityreduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  11. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  12. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of Advances in Neural Information Processing System, vol. 14, pp. 585–591 (2001)

    Google Scholar 

  13. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall (2001)

    Google Scholar 

  14. Donoho, D.L., Grimes, C.: Hessian Eigenmaps: Locally Linear Embedding Techniques for High Dimensional Data. Proceedings of the National Academy of Sciences of the United States of America 100(10), 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of Advances in Neural Information Processing Systems, Vancouver, Canada, vol. 16 (2003)

    Google Scholar 

  16. He, X., Yan, S., Hu, Y., Zhang, H.-J.: Learning a locality preserving subspace for visual recognition. In: Proceedings of Ninth International Conference on Computer Vision, pp. 385–392 (2003)

    Google Scholar 

  17. Cheng, J., Liu, Q., Lu, H., Chen, Y.-W.: Supervised kernel localitypreserving projections for face recognition. Neuro Computing 67, 443–449 (2005)

    Google Scholar 

  18. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  19. Yang, M.H., Ahuja, N., Kriegman, D.: Face recognition using kernel eigenfaces. In: Proceedings of International Conference on Image Processing, Vancouver, Canada, pp. 37–40 (2000)

    Google Scholar 

  20. Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using kernel based fisher discriminant analysis. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, Washington, pp. 197–201 (2002)

    Google Scholar 

  21. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, Sarasota, USA (December 1994)

    Google Scholar 

  22. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  23. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using nonnegative spectral analysis. In: Proceeding of Association for the Advancement of Artificial Intelligence (2012)

    Google Scholar 

  24. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via PLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Monay, F., Gatica-Perez, D.: PLSA-based image auto-annotation: constraining the latent space. In: Proceeding of ACM International Conference on Multimedia, pp. 348–351 (2004)

    Google Scholar 

  26. Cao, L., Li, F.: Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: Proceeding of IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  27. Cai, D., Mei, Q., Han, J., Zhai, C.: Modeling hidden topics on document manifold. In: Proceeding of Conference on Information and Knowledge Management, pp. 911–920 (2008)

    Google Scholar 

  28. Cai, D., Wang, X., He, X.: Probabilistic dyadic data analysis with local and global consistency. In: Proceeding of International Conference on Machine Learning, pp. 105–112 (2009)

    Google Scholar 

  29. Li, P., Cheng, J., Lu, H.: Modeling Hidden Topics with Dual Local Consistency for Image Analysis. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 648–659. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: Proceeding of IEEE International Conference on Computer Vision, pp. 1208–1213 (2005)

    Google Scholar 

  31. Donoho, D.: For most large underdetermined systems of linear equations the minimal.1- norm solution is also the sparsest solution. Communications on Pure and applied Mathematics 59, 797–829 (2004)

    Article  MathSciNet  Google Scholar 

  32. Meinshansen, N., Buhlmann, P.: High-dimensional graphs and variable selection with the lasso. The Annals of Statistics 34, 1436–1462 (2006)

    Article  MathSciNet  Google Scholar 

  33. Wright, J., Genesh, A., Yang, A., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 210–227 (2009)

    Article  Google Scholar 

  34. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.: Learning with.1-graph for image analysis. IEEE Transactions on Image Processing 19, 858–866 (2010)

    Article  MathSciNet  Google Scholar 

  35. Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models. Kluwer Academic Publishers (1998)

    Google Scholar 

  36. Li, F., Rob, F., Pietro, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Proceeding of CVPR Workshop on Generative Model Based Vision, pp. 178–178 (2004)

    Google Scholar 

  37. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: Proceeding of ACM Special Interest Group on Information Retrieval, pp. 267–273 (2003)

    Google Scholar 

  38. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: the art of scientific computing. Cambridge University Press (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, J., Lu, H. (2014). Local Structure Preserving Based Subspace Analysis Methods and Applications. In: Chen, YW., C. Jain, L. (eds) Subspace Methods for Pattern Recognition in Intelligent Environment. Studies in Computational Intelligence, vol 552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54851-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54851-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54850-5

  • Online ISBN: 978-3-642-54851-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics