Skip to main content

Metal-Organic Frameworks (MOFs) for CO2 Capture

  • Chapter
  • First Online:
Porous Materials for Carbon Dioxide Capture

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Metal-organic frameworks (MOFs) composed of metal nodes linked by organic linkers are a class of newly developed crystalline hybrid porous solids. In the past few years, MOFs have seen a very rapid development both in terms of synthesis of novel structures and their potential applications in a wide variety of fields. Nearly all metals and a large diversity of organic species can be used to construct MOFs, so that a huge variety of materials of MOFs with different structures and properties are accessible. Due to their uniform yet tunable pore sizes, high-surface areas, and easy pore functionalization, MOFs have emerged as superior porous materials for adsorption and membrane-based applications. Particularly, recent studies have demonstrated that MOFs are perfect and quite promising in CO2 capture. This chapter starts with an introduction of MOFs, including their design and synthesis, structural features, properties, and potential applications. Then, their implementation and performance in CO2 capture-related aspects including selective CO2 adsorption in MOFs, CO2 separation in MOFs, MOF-based membrane for CO2 separation, the design of MOFs for CO2 capture, and computational simulation in MOFs for CO2 capture are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  2. Rackley SA (2010) Carbon capture and storage. Elsevier, Amsterdam

    Google Scholar 

  3. Wilson EJ, Gerard D (2007) Carbon capture and sequestration: integrating technology, monitoring, regulation. Wiley, New York

    Google Scholar 

  4. Bolhàr-Nordenkampf J (2009) Chemical looping for syngas and power generation with CO2 capture: pilot plant study and process modeling. Suedwest-deutscher Verlag fuer Hochschulschriften

    Google Scholar 

  5. Mokhatab S, Poe WA, Speight JG (2006) Handbook of natural gas transmission and processing. Gulf Professional Publishing, Houston

    Google Scholar 

  6. Tagliabue M, Farrusseng D, Valencia S et al (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155:553–566

    Google Scholar 

  7. Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture—development and progress. Chem Eng Process 49:313–322

    Google Scholar 

  8. Wappel D, Gronald G, Kalb R et al (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenhouse Gas Control 4:486–494

    Google Scholar 

  9. Beck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  10. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854

    Google Scholar 

  11. Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Google Scholar 

  12. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Google Scholar 

  13. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Google Scholar 

  14. Batten SR, Neville SM, Turner DR (2009) Coordination polymers: design, analysis and application. RSC Publishing, Cambridge

    Google Scholar 

  15. MacGillivray L (2010) Metal-organic frameworks: design and application. Wiley, New York

    Google Scholar 

  16. Sumida K, Rogow DL, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781

    Google Scholar 

  17. Suh MP, Park HJ, Prasad TK et al (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112:782–835

    Google Scholar 

  18. Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Google Scholar 

  19. Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Google Scholar 

  20. Horcajada P, Gref R, Baati T et al (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268

    Google Scholar 

  21. Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231

    Google Scholar 

  22. Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M et al (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38:1257–1283

    Google Scholar 

  23. Zhao D, Timmons DJ, Yuan DQ et al (2011) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44:123–133

    Google Scholar 

  24. Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Google Scholar 

  25. Kitaura R, Kitagawa S, Kubota Y et al (2002) Formation of a one-dimensional array of oxygen in a microporous metal-organic solid. Science 298:2358–2361

    Google Scholar 

  26. Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Google Scholar 

  27. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504

    Google Scholar 

  28. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969

    Google Scholar 

  29. O’ Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702

    Google Scholar 

  30. Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000

    Google Scholar 

  31. Chui SSY, Lo SMF, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    Google Scholar 

  32. Ma SQ, Sun DF, Ambrogio M et al (2007) Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859

    Google Scholar 

  33. Li JR, Zhou HC (2010) Bridging-ligand-substitution strategy for the preparation of metal–organic polyhedra. Nat Chem 2:893–898

    Google Scholar 

  34. Li JR, Yakovenko AA, Lu W et al (2010) Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo–Mo dimers. J Am Chem Soc 132:17599–17610

    Google Scholar 

  35. Yuan DQ, Zhao D, Sun DF et al (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357–5361

    Google Scholar 

  36. Banerjee R, Phan A, Wang B et al (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.Science 319:939–943

    Google Scholar 

  37. Stock N (2010) High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater 129:287–295

    Google Scholar 

  38. Jing X, He C, Dong D et al (2012) Homochiral crystallization of metal-organic silver frameworks: asymmetric [3 + 2] cycloaddition of an azomethine ylide. Angew Chem Int Ed 40:10127–10131

    Google Scholar 

  39. Lin ZJ, Slawin AMZ, Morris RE (2007) Chiral induction in the ionothermal synthesis of a 3D coordination polymer. J Am Chem Soc 129:4880–4881

    Google Scholar 

  40. Jhung SH, Lee JH, Chang JS (2005) Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull Korean Chem Soc 26:880–881

    Google Scholar 

  41. Schlesinger M, Schulze S, Hietschold M et al (2010) Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater 132:121–127

    Google Scholar 

  42. Pichon A, Lazuen-Garaya A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214

    Google Scholar 

  43. Chen BL, Ockwig NW, Millward AR et al (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed 44:4745–4749

    Google Scholar 

  44. Millange F, Serre C, Férey G (2002) Synthesis, structure determination and properties of MIL-53 as and MIL-53ht: the first CrIII hybrid inorganic–organic microporous solids: CrIII(OH) · {O2C–C6H4–CO2} · {HO2C–C6H4–CO2H} x . Chem Commun 38:822–823

    Google Scholar 

  45. Serre C, Millange F, Thouvenot C et al (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH) · {O2C–C6H4–CO2} · {HO2C–C6H4–CO2H}x · H2Oy. J Am Chem Soc 124:13519–13526

    Google Scholar 

  46. Loiseau T, Serre C, Huguenard C et al (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382

    Google Scholar 

  47. Cui YJ, Yue YF, Qian GD et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162

    Google Scholar 

  48. Lan An J, Li KH, Wu HH et al (2009) A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed 48:2334–2338

    Google Scholar 

  49. Pramanik S, Zheng C, Zhang X et al (2011) New microporous metal–organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J Am Chem Soc 133:4153–4155

    Google Scholar 

  50. Furukawa H, Ko N, Go YB et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    Google Scholar 

  51. Makal TA, Li JR, Lu W et al (2012) Methane storage in advanced porous materials. Chem Soc Rev 41:7761–7779

    Google Scholar 

  52. Wang XS, Ma SQ, Rauch K et al (2008) Metal–organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem Mater 20:3145–3152

    Google Scholar 

  53. Ma SQ, Sun DF, Simmons JM et al (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130:1012–1016

    Google Scholar 

  54. Seo JS, Whang D, Lee H et al (2000) A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404:982–986

    Google Scholar 

  55. Evans OR, Ngo HL, Lin W (2001) Chiral porous solids based on lamellar lanthanide phosphonates. J Am Chem Soc 123:10395–10396

    Google Scholar 

  56. Horcajada P, Serre C, Vallet-Regí M et al (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978

    Google Scholar 

  57. Li JR, Ma YG, McCarthy MC et al (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823

    Google Scholar 

  58. Mason JA, Sumida K, Herm ZR et al (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4: 3030-3040

    Google Scholar 

  59. Bao Z, Yu L, Ren Q et al (2011) Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci 353:549–556

    Google Scholar 

  60. Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121–127

    Google Scholar 

  61. Saha D, Bao ZB, Jia F et al (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 44:1820–1826

    Google Scholar 

  62. Zheng B, Bai J, Duan J et al (2011) Enhanced CO2 binding affinity of a high-uptake rht-type metal–organic framework decorated with acylamide groups. J Am Chem Soc 133:748–751

    Google Scholar 

  63. Demessence A, D’Alessandro DM, Foo ML et al (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal–organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786

    Google Scholar 

  64. Bae YS, Farha OK, Hupp JT et al (2009) Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19:2131–2134

    Google Scholar 

  65. Kondo A, Chinen A, Kajiro H et al (2009) Metal-ion-dependent gas sorptivity of elastic layer-structured MOFs. Chem Eur J 15:7549–7553

    Google Scholar 

  66. An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132:5578–5579

    Google Scholar 

  67. Maji TK, Matsuda R, Kitagawa S (2007) A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater 6:142–148

    Google Scholar 

  68. Yazaydin AÖ, Benin AI, Faheem SA et al (2009) Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem Mater 21:1425–1430

    Google Scholar 

  69. Llewellyn PL, Bourrrelly S, Serre C et al (2006) How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew Chem Int Ed 4:7751–7754

    Google Scholar 

  70. Keskin S, van Heest TM, Sholl DS (2010) Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3:879–891

    Google Scholar 

  71. Farrusseng D, Daniel C, Gaudillere C et al (2009) Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation. Langmuir 25:7383–7388

    Google Scholar 

  72. Vaidhyanathan R, Iremonger SS, Shimizu GKH et al (2010) Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330:650–653

    Google Scholar 

  73. Bordiga S, Regli L, Bonino F et al (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9:2676–2685

    Google Scholar 

  74. Dietzel PDC, Johnsen RE, Fjellvag H et al (2008) Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chem Commun 41:5125–5127

    Google Scholar 

  75. Vimont A, Travert A, Bazin P et al (2007) Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr3+(OH)(O2C–C6H4–CO2). Chem Commun 31:3291–3293

    Google Scholar 

  76. Li JR, Tao Y, Yu Q et al (2008) Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. Chem Eur J 14:2771–2776

    Google Scholar 

  77. Dybtsev DN, Chun H, Yoon SH et al (2004) Microporous manganese formate: a simple metal–organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc 126:32–33

    Google Scholar 

  78. Loiseau T, Lecroq L, Volkringer C et al (2006) MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J Am Chem Soc 128:10223–10230

    Google Scholar 

  79. Xue M, Ma SQ, Jin Z et al (2008) Robust metal–organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. Inorg Chem 47:6825–6828

    Google Scholar 

  80. Ma SQ, Wang XS, Yuan DQ et al (2008) A coordinatively linked Yb metal-organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47:4130–4133

    Google Scholar 

  81. Bae YS, Mulfort KL, Frost H et al (2008) Separation of CO2 from CH4 using mixed-ligand metal–organic frameworks. Langmuir 24:8592–8598

    Google Scholar 

  82. Bae YS, Farha OK, Spokoyny AM (2008) Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem Commun 35:4135–4137

    Google Scholar 

  83. Wang B, Côte AP, Furukawa H et al (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211

    Google Scholar 

  84. Chen BL, Ma SQ, Zapata F et al (2007) Rationally designed micropores within a metal–organic framework for selective sorption of gas molecules. Inorg Chem 46:1233–1236

    Google Scholar 

  85. Bourrelly S, Llewellyn PL, Serre C et al (2005) Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc 127:13519–13521

    Google Scholar 

  86. Hamon L, Llewellyn PL, Devic T, Ghoufi A et al (2009) Co-adsorption and separation of CO2–CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J Am Chem Soc 131:17490–17499

    Google Scholar 

  87. Férey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380–1399

    Google Scholar 

  88. Culp JT, Smith MR, Bittner E et al (2008) Hysteresis in the physisorption of CO2 and N2 in a flexible pillared layer nickel cyanide. J Am Chem Soc 130:12427–12434

    Google Scholar 

  89. Hayashi H, Côte AP, Furukawa H et al (2007) Zeolite A imidazolate frameworks. Nat Mater 6:501–506

    Google Scholar 

  90. Kitaura R, Seki K, Akiyama G et al (2003) Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew Chem Int Ed 42:428–431

    Google Scholar 

  91. Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877

    Google Scholar 

  92. Britt D, Furukawa H, Wang B et al (2009) Highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites. Proc Natl Acad Sci USA 106:20637–20640

    Google Scholar 

  93. Ramsahye NA, Maurin G, Bourrelly S (2007) On the breathing effect of a metal–organic framework upon CO2 adsorption: monte carlo compared to microcalorimetry experiments. Chem Commun 31:3261–3263

    Google Scholar 

  94. Finsy V, Ma L, Alaerts L et al (2009) Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Micropor Mesopor Mater 120:221–227

    Google Scholar 

  95. Bárcia PS, Bastin L, Hurtado EJ et al (2008) Single and multicomponent sorption of CO2, CH4 and N2 in a microporous metal organic framework. Sep Sci Technol 43:3494–3521

    Google Scholar 

  96. Bastin L, Bárcia PS, Hurtado EJ et al (2008) A microporous metal−organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J Phys Chem C 112:1575–1581

    Google Scholar 

  97. Yoon JW, Jhung SH, Hwang YK et al (2007) Gas-sorption selectivity of CUK-1: a porous coordination solid made of cobalt(II) and pyridine-2,4- dicarboxylic acid. Adv Mater 19:1830–1834

    Google Scholar 

  98. Quartapelle Procopio E, Linares F, Montoro C et al (2010) Cation-exchange porosity tuning in anionic metal-organic frameworks for the selective separation of gases and vapors and for catalysis. Angew Chem Int Ed 49:7308–7311

    Google Scholar 

  99. Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Google Scholar 

  100. McDonald TM, Lee WR, Mason JA et al (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065

    Google Scholar 

  101. Arstad B, Fjellvåg H, Kongshaug KO et al (2008) Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14:755–762

    Google Scholar 

  102. Stavitski E, Pidko EA, Couck S et al (2011) Complexity behind CO2 capture on NH2-MIL-53(Al). Langmuir 27:3970–3976

    Google Scholar 

  103. Deng HX, Doonan CJ, Furukawa H et al (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850

    Google Scholar 

  104. Higman C, Burgt V (2003) Gasification. Elsevier, Amsterdam

    Google Scholar 

  105. Dietzel PDC, Besikiotis V, Blom R (2009) Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J Mater Chem 19:7362–7370

    Google Scholar 

  106. Herm ZR, Swisher JA, Smit B et al (2011) Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133:5664–5667

    Google Scholar 

  107. Mu B, Schoenecker PM, Walton KS (2010) Gas adsorption study on mesoporous metal–organic framework UMCM-1. J Phys Chem C 114:6464–6471

    Google Scholar 

  108. García-Ricard OJ, Hernández-Maldonado A (2010) Cu2(pyrazine-2,3-dicarboxylate)2(4,4′-bipyridine) porous coordination sorbents: activation temperature, textural properties, and CO2 adsorption at low pressure range. J Phys Chem C 114:1827–1834

    Google Scholar 

  109. Li Y, Yang RT (2007) Gas adsorption and storage in metal–organic framework MOF-177. Langmuir 23:12937–12944

    Google Scholar 

  110. Wang QM, Shen D, Bülow M et al (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230

    Google Scholar 

  111. Murray LJ, Dincă M, Yano J et al (2010) Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. J Am Chem Soc 132:7856–7857

    Google Scholar 

  112. Bloch ED, Murray LJ, Queen WL et al (2011) Selective binding of O2 over N2 in a redox-active metal–organic framework with open iron (II) coordination sites. J Am Chem Soc 133:14814–14822

    Google Scholar 

  113. Liu YY, Ng ZF, Khan EA et al (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Micropor Mesopor Mater 118:296–301

    Google Scholar 

  114. Yoo Y, Lai ZP, Jeong HK (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth Micropor Mesopor Mater 123:100–106

    Google Scholar 

  115. Keskin S, Sholl D (2007) Screening meta–organic framework materials for membrane-based methane/carbon dioxide separations. J Phys Chem C 111:14055–14059

    Google Scholar 

  116. Guo H, Zhu G, Hewitt IJ et al (2009) “Twin copper source” growth of metal–organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J Am Chem Soc 131:1646–1647

    Google Scholar 

  117. Liu Y, Hu E, Khan EA et al (2010) Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J Membr Sci 353:36–40

    Google Scholar 

  118. Adams R, Carson C, Ward J et al (2010) Metal organic framework mixed matrix membranes for gas separations. Micropor Mesopor Mater 131:13–20

    Google Scholar 

  119. Ordoñez MJC, Balkus KJ Jr, Ferraris JP et al (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 361:28–37

    Google Scholar 

  120. Liang ZJ, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23:2785–2789

    Google Scholar 

  121. Couck S, Denayer JFM, Baron GV et al (2009) An amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327

    Google Scholar 

  122. Bloch ED, Britt D, Lee C et al (2010) Metal insertion in a microporous metal–organic framework lined with 2,2′-bipyridine. J Am Chem Soc 132:14382–14384

    Google Scholar 

  123. Li JR, Yu JM, Lu WG et al (2013) Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat Comm 4:1538–1545

    Google Scholar 

  124. Ma SQ, Sun DF, Wang XS et al (2007) A mesh-adjustable molecular sieve for general use in gas separation. Angew Chem Int Ed 46:2458–2462

    Google Scholar 

  125. Ma SQ, Sun DF, Yuan DQ et al (2009) Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J Am Chem Soc 131:6445–6451

    Google Scholar 

  126. Yang QY, Liu DH, Zhong C et al (2013) Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem Rev 113:8261–8323

    Google Scholar 

  127. Skoulidas AI, Sholl DS (2005) Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J Phys Chem B 109:15760–15768

    Google Scholar 

  128. Yang Q, Zhong C (2006) Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. ChemPhysChem 7:1417–1421

    Google Scholar 

  129. Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal–organic frameworks. J Phys Chem B 110:17776–17783

    Google Scholar 

  130. Dubbeldam D, Frost H, Walton KS et al (2007) Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilib 261:152–161

    Google Scholar 

  131. Babarao R, Jiang J, Sandler SI (2009) Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal–organic frameworks. Langmuir 25:6590–6590

    Google Scholar 

  132. Yang QY, Zhong CL, Chen JF (2008) Computational study of CO2 storage in metal–organic frameworks. J Phys Chem C 112:1562–1569

    Google Scholar 

  133. Xu Q, Zhong C (2010) A general approach for estimating framework charges in metal–organic frameworks. J Phys Chem C 114:5035–5042

    Google Scholar 

  134. Dubbeldam D, Krishna R, Snurr RQ (2009) Method for analyzing structural changes of flexible metal–organic frameworks induced by adsorbates. J Phys Chem C 113:19317–19327

    Google Scholar 

  135. Lu CM, Liu J, Xiao KF et al (2010) Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem Eng J 156:465–470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Rong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, H., Li, JR. (2014). Metal-Organic Frameworks (MOFs) for CO2 Capture. In: Lu, AH., Dai, S. (eds) Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54646-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54646-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54645-7

  • Online ISBN: 978-3-642-54646-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics