Skip to main content

Bortezomib

  • Chapter
  • First Online:
Small Molecules in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 201))

Abstract

The ubiquitin-mediated degradation of proteins in numerous cellular processes, such as turnover and quality control of proteins, cell cycle and apoptosis, transcription and cell signaling, immune response and antigen presentation, and inflammation and development makes the ubiquitin–proteosome systems a very interesting target for various therapeutic interventions. Proteosome inhibitors were first synthesized as tools to probe the function and specificity of this particle’s proteolytic activities. Most synthetic inhibitors rely on a peptide base, which mimics a protein substrate, attached at a COOH terminal “warhead.” Notable warheads include boronic acids, such as bortezomib and epoxy ketones, such as carfilzomib. A variety of natural products also inhibit the proteosome that are not peptide-based, most notably lactacystin, that is related to NPI-0052, or salinosporamide A, another inhibitor in clinical trials. The possibility that proteosome inhibitors could be drug candidates was considered after studies showed that they induced apoptosis in leukemic cell lines. The first proteasome inhibitor in clinical application, bortezomib showed activity in non-small-cell lung and androgen-independent prostate carcinoma, as well as MM and mantle cell and follicular non-Hodgkin’s lymphoma. It is now licensed for the treatment of newly diagnosed as well as relapsed/progressive MM and has had a major impact on the improvement in the treatment of MM in the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams J, Behnke M, Chen S et al (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–338

    CAS  PubMed  Google Scholar 

  • Adams J, Palombella VJ, Sausville EA et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  • Aghajanian C, Soignet S, Dizon DS et al (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8:2505–2511

    CAS  PubMed  Google Scholar 

  • Aghajanian C, Dizon DS, Sabbatini P et al (2005) Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol 23:5943–5949

    CAS  PubMed  Google Scholar 

  • Alexanian R, Barlogie B, Tucker S (1990) VAD-based regimens as primary treatment for multiple myeloma. Am J Hematol 33:86–89

    CAS  PubMed  Google Scholar 

  • Alexanian R, Dimopoulos MA, Delasalle K et al (1992) Primary dexamethasone treatment of multiple myeloma. Blood 80(4):887–890

    CAS  PubMed  Google Scholar 

  • Alsina M, Trudel S, Vallone M et al (2007) Phase I single agent antitumor activity of twice weekly-consecutive day dosing of the proteasome inhibitor carfilzomib (PR-171) in hematologic malignancies. Blood 110:128a (abstract 411)

    Google Scholar 

  • Anderson KC (2013) Therapeutic advances in relapsed or refractory multiple myeloma. J Natl Compr Canc Netw 11(5 Suppl):676–679

    CAS  PubMed  Google Scholar 

  • Attal M, Harousseau JL, Stoppa AM et al (1996) A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe francais du myelome. New Engl J Med 335:91–97

    CAS  PubMed  Google Scholar 

  • Barlogie B, Shaughnessy JD, Tricot G et al (2004) Treatment of multiple myeloma. Blood 103:20–32

    CAS  PubMed  Google Scholar 

  • Belch A, Kouroukis CT, Crump M et al (2007) A phase II study of bortezomib in mantle cell lymphoma: the National Cancer Institute of Canada Clinical Trials Group trial IND.150. Ann Oncol 18:116–121

    CAS  PubMed  Google Scholar 

  • Bennouna J, Delord JP, Campone M, Pinel M-C (2008) Vinflunine: a new microtubule inhibitor agent. Clin Cancer Res 14:1610–1617

    Google Scholar 

  • Berenson JR, Yang HH, Sadler K et al (2006) Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 24:937–944

    CAS  PubMed  Google Scholar 

  • Biehn SE, Moore DT, Voorhees PM et al (2007) Extended follow-up of outcome measures in multiple myeloma patients treated on a phase I study with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 86:211–216

    CAS  PubMed  Google Scholar 

  • Bladé J, San Miguel JF, Fontanillas M et al (2001) Increased conventional chemotherapy does not improve survival in multiple myeloma: longterm results of two PETHEMA trials including 914 patients. Hematol J 2:272–278

    PubMed  Google Scholar 

  • Blaney SM, Bernstein M, Neville K et al (2004) Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). J Clin Oncol 22:4804–4809

    CAS  PubMed  Google Scholar 

  • Bowerman B, Kurz T (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development 133:773–784

    CAS  PubMed  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226

    CAS  PubMed  Google Scholar 

  • Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Rechsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett J (2000) Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J 346(Pt 1):155–161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavo M, Benni M, Ronconi S et al (2002) Melphalan-prednisone versus alternating combination VAD/MP or VND/MP as primary therapy for multiple myeloma: final analysis of a randomized clinical study. Haematologica 87:934–942

    CAS  PubMed  Google Scholar 

  • Chanan-Khan AA, Padmanabhan S, Miller KC et al (2006) Final results of a phase II study of bortezomib (Velcade) in combination with liposomal doxorubicin (Doxil) and thalidomide (VDT) demonstrate a sustained high response rate in patients (pts) with relapsed (rel) or refractory (ref) multiple myeloma. In: Updated data presented at the 2006 annual meeting of the American Society of Hematology. Blood vol 108, p 1010a

    Google Scholar 

  • Chanan-Khan AA, Kaufman JL, Mehta J et al (2007) Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 109:2604–2606

    CAS  PubMed  Google Scholar 

  • Chauhan D, Uchiyama H, Akbarali Y et al (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kB. Blood 87:1104–1112

    CAS  PubMed  Google Scholar 

  • Chauhan D, Catley L, Li G et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell 8:407–419

    CAS  PubMed  Google Scholar 

  • Chen CI, Kouroukis CT, White D et al (2007) Bortezomib is active in patients with untreated or relapsed Waldenstrom’s macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1570–1575

    CAS  PubMed  Google Scholar 

  • Choy H, Park C, Yao M (2008) Current status and future prospect for satraplatin: an oral platinum analogue. Clin Cancer Res 14:1618–1623

    Google Scholar 

  • Ciechanover A (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ 12:1178–1190

    CAS  PubMed  Google Scholar 

  • Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22:442–451

    CAS  PubMed  Google Scholar 

  • Cortes J, Thomas D, Koller C et al (2004) Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 10:3371–3376

    CAS  PubMed  Google Scholar 

  • Cusack JC Jr, Liu R, Houston M et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kB inhibition. Cancer Res 61:3535–3540

    CAS  PubMed  Google Scholar 

  • Davies FE, Wu P, Srikanth M et al (2006) The combination of cyclophosphamide, velcade and dexamethasone (CVD) induces high response rates with minimal toxicity compared to velcade alone (V) and velcade plus dexamethasone (VD). In: Updated data presented at the 2006 annual meeting of the American Society of Hematology. Blood vol 108, p 1009a

    Google Scholar 

  • Delic J, Masdehors P, Omura S et al (1998) The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-α-initiated apoptosis. Br J Cancer 77:1103–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demartino GN, Gillette TG (2007) Proteasomes: machines for all reasons. Cell 129:659–662

    CAS  PubMed  Google Scholar 

  • Demo SD, Kirk CJ, Aujay MA et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391

    CAS  PubMed  Google Scholar 

  • Dimopoulos MA, Pouli A, Zervas K et al (2003) Prospective randomized comparison of vincristine, doxorubicin and dexamethasone (VAD) administered as intravenous bolus injection and VAD with liposomal doxorubicin as first-line treatment in multiple myeloma. Ann Oncol 14:1039–1044

    CAS  PubMed  Google Scholar 

  • Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC et al (2005) Treatment of relapsed or refractory Waldenstrom’s macroglobulinemia with bortezomib. Haematologica 90:1655–1658

    CAS  PubMed  Google Scholar 

  • Dy GK, Thomas JP, Wilding G et al (2005) A phase and pharmacologic trial of two schedules of the proteasome inhibitor, PS-341 (bortezomib, velcade), in patients with advanced cancer. Clin Cancer Res 11:3410–3416

    CAS  PubMed  Google Scholar 

  • Elliott PJ, Zollner TM, Boehncke WH (2003) Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med 81:235–245

    CAS  PubMed  Google Scholar 

  • Facon T, Mary JY, Pegourie B et al (2006) Dexamethasone-based regimens versus melphalan-prednisone for elderly multiple myeloma patients ineligible for high-dose therapy. Blood 107:1292–1298

    CAS  PubMed  Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 42:355–357

    CAS  PubMed  Google Scholar 

  • Fenteany G, Schreiber SL (1998) Lactacystin, proteasome function, and cell fate. J Biol Chem 273:8545–8548

    CAS  PubMed  Google Scholar 

  • Fisher RI, Bernstein SH, Kahl BS et al (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24:4867–4874

    PubMed  Google Scholar 

  • Friedman J, Al-Zoubi A, Kaminski M et al (2006) A new model predicting at least a very good partial response in patients with multiple myeloma after cycles of velcade-based therapy. In: Updated data presented at the 2006 annual meeting of the European Hematology Association. Haematologica, vol 91, p 273

    Google Scholar 

  • Fuchs SY (2002) The role of ubiquitin-proteasome pathway in oncogenic signaling. Cancer Biol Ther 1:337–341

    CAS  PubMed  Google Scholar 

  • Gautschi O, Heighway J, Mack PC et al (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14:1624–1633

    Google Scholar 

  • Gertz MA, Lacy MQ, Dispenzieri A et al (2006) High-dose chemotherapy with autologous hematopoietic stem cell transplantation in patients with multiple myeloma. Expet Rev Anticancer Ther 6:343–360

    CAS  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    CAS  PubMed  Google Scholar 

  • Goy A, Younes A, McLaughlin P et al (2005) Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23:667–675

    CAS  PubMed  Google Scholar 

  • Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    CAS  PubMed  Google Scholar 

  • Harousseau JL, Mathiot C, Attal M et al (2007) VELCADE/dexamethasone (Vel/D) versus VAD as induction treatment prior to autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma (MM): updated results of the IFM 2005/01 trial. Blood 110:139a

    Google Scholar 

  • Harousseau JL, Mathiot C, Attal M et al (2008) Bortezomib/dexamethasone versus VAD as induction prior to autologous stem cell transplantation (ASCT) in previously untreated multiple myeloma (MM): updated data from IFM 2005/01 trial. J Clin Oncol 26:455s

    Google Scholar 

  • Hernandez JM, Garcia-Sanz R, Golvano E et al (2004) Randomized comparison of dexamethasone combined with melphalan versus melphalan with prednisone in the treatment of elderly patients with multiple myeloma. Br J Haematol 127:159–164

    CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  • Hideshima T, Chauhan D, Podar K et al (2001) Novel therapies targeting the myeloma cell and its bone marrow micro environment. Semin Oncol (6):607–612 (Review)

    Google Scholar 

  • Hideshima T, Chauhan D, Richardson P et al (2002) NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647

    CAS  PubMed  Google Scholar 

  • Hideshima T, Podar K, Chauhan D et al (2004) p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 23:8766–8776

    CAS  PubMed  Google Scholar 

  • Hideshima T, Bradner JE, Wong J et al (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102:8567–8572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hideshima T, Catley L, Yasui H et al (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107:4053–4062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho YK, Bargagna-Mohan P, Wehenkel M, Mohan R, Kim KB (2007) LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem Biol 14:419–430

    CAS  PubMed  Google Scholar 

  • Hollmig K, Stover J, Talamo G et al (2004) Bortezomib (Velcade™) + Adriamycin™ + thalidomide + dexamethasone (VATD) as an effective regimen in patients with refractory or relapsed multiple myeloma (MM). In: Updated data presented at the 2004 annual meeting of the American Society of Hematology. Blood, vol 104, p 659a

    Google Scholar 

  • Imajoh-Ohmi KT, Sugiyama S, Tanaka K, Omura S, Kikuchi H (1995) Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem Biophys Res Commun 217:1070–1077

    CAS  PubMed  Google Scholar 

  • Jagannath S, Barlogie B, Berenson J et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127:165–172

    CAS  PubMed  Google Scholar 

  • Jagannath S, Barlogie B, Berenson JR et al (2005) Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impaired renal function. Cancer 103:1195–1200

    CAS  PubMed  Google Scholar 

  • Jagannath S, Richardson PG, Sonneveld P et al (2007) Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 21:151–157

    CAS  PubMed  Google Scholar 

  • Jesenberger V, Jentsch S (2002) Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol 3:112–1121

    CAS  PubMed  Google Scholar 

  • Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16:76–81

    CAS  PubMed  Google Scholar 

  • Knop S, Einsele H, Bargou R et al (2008) Adjusted dose lenalidomide is safe and effective in patients with deletion (5q) myelodysplastic syndrome and severe renal impairment. Leuk Lymphoma 49(2):346–349

    CAS  PubMed  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644

    CAS  PubMed  Google Scholar 

  • Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7:1143–1152

    CAS  PubMed  Google Scholar 

  • Kortuem KM, Stewart AK (2013) Carfilzomib. Blood 121(6):893–897

    CAS  Google Scholar 

  • Kropff MH, Bisping G, Wenning D et al (2005a) Bortezomib in combination with dexamethasone for relapsed multiple myeloma. Leuk Res 29:587–590

    CAS  PubMed  Google Scholar 

  • Kropff M, Bisping G, Liebisch P et al (2005b) Bortezomib in combination with high-dose dexamethasone and continuous low-dose oral cyclophosphamide for relapsed multiple myeloma. In: Updated data presented at the 2005 annual meeting of the American Society of Hematology. Blood, vol 106, p 716a

    Google Scholar 

  • Kuhn DJ, Chen Q, Voorhees PM et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against pre-clinical models of multiple myeloma. Blood 110:3281–3290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kyle RA, Rajkumar SV (2004) Multiple myeloma. New Eng J Med 351:1860–1873

    CAS  PubMed  Google Scholar 

  • Lee JL, Swain SM (2008) The epothilones: translating from the laboratory to the clinic. Clin Cancer Res 14:1643–1649

    Google Scholar 

  • Lee SJ, Richardson PG, Sonneveld P et al (2005) Health-related quality of life (HRQL) associated with bortezomib compared with high-dose dexamethasone in relapsed multiple myeloma (MM): results from APEX study. J Clin Oncol 23:568s

    Google Scholar 

  • Leoni F, Casini C, Breschi C et al (2006) Low dose bortezomib, dexamethasone, thalidomide plus liposomal doxorubicin in relapsed and refractory myeloma. In: Updated data presented at the 2006 annual meeting of the European Hematology Association. Haematologica, vol 91, p 281

    Google Scholar 

  • Ling YH, Liebes L, Ng B et al (2002) PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther 1:841–849

    CAS  PubMed  Google Scholar 

  • Lonial S, Waller EK, Richardson PG et al (2005) Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 106:3777–3784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1998) Superfolding of the partially unfolded core-glycosylated intermediate of human P-glycoprotein into the mature enzyme is promoted by substrate-induced transmembrane domain interactions. J Biol Chem 273:14671–14674

    CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1999) The human multidrug resistance P-glycoprotein is inactive when its maturation is inhibited: potential for a role in cancer chemotherapy. FASEB J 7:1724–1732

    Google Scholar 

  • Ma MH, Yang HH, Parker K et al (2003) The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 3:1136–1144

    Google Scholar 

  • Ma C, Mandrekar SJ, Alberts SR et al (2007) A phase I and pharmacologic study of sequences of the proteasome inhibitor, bortezomib (PS-341, velcade), in combination with paclitaxel and carboplatin in patients with advanced malignancies. Cancer Chemother Pharmacol 59:207–215

    CAS  PubMed  Google Scholar 

  • Mateos MV, Hernandez JM, Hernandez MT et al (2006) Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 108:2165–2172

    CAS  PubMed  Google Scholar 

  • Mateos MV, Hernandez JM, Hernandez MT et al (2007) Frontline VMP in elderly MM patients: extended follow-up. Haematologica 92:180

    Google Scholar 

  • Messersmith WA, Baker SD, Lassiter L et al (2006) Phase I trial of bortezomib in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res 12:1270–1275

    CAS  PubMed  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Biologic sequelae of nuclear factor-κB blockade in multiple myeloma: therapeutic applications. Blood 99:4079–4086

    CAS  PubMed  Google Scholar 

  • Mitsiades N, Mitsiades CS, Richardson PG et al (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101:2377–2380

    CAS  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ et al (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107:1092–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohrbacher A, Levine AM (2005) Reversal of advanced renal dysfunction on bortezomib treatment in multiple myeloma patients. J Clin Oncol 23:612s

    Google Scholar 

  • Moreau P, Karamanesht II, Domnikova N, Kyselyova MY, Vilchevska KV, Doronin VA, Schmidt A, Hulin C, Leleu X, Esseltine DL, Venkatakrishnan K, Skee D, Feng H, Girgis S, Cakana A, van de Velde H, Deraedt W, Facon T (2012) Pharmacokinetic, pharmacodynamic and covariate analysis of subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma. Clin Pharmacokinet 51(12):823–829

    CAS  PubMed  Google Scholar 

  • Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192–201

    CAS  PubMed  Google Scholar 

  • Myeloma Trialists’ Collaborative Group (1998) Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6, 633 patients from 27 randomized trials. J Clin Oncol 16:3832–3842

    Google Scholar 

  • Naujokat C, Hoffmann S (2002) Role and function of the 26 S proteasome in proliferation and apoptosis. Lab Invest 82:965–980

    CAS  PubMed  Google Scholar 

  • Nawrocki ST, Carew JS, Dunner K Jr et al (2005a) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519

    CAS  PubMed  Google Scholar 

  • Nawrocki ST, Carew JS, Pino MS et al (2005b) Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 65:11658–11666

    CAS  PubMed  Google Scholar 

  • Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P (2007) Proteasome inhibitors: antitumor effects and beyond. Leukemia 21:30–36

    CAS  PubMed  Google Scholar 

  • O’Connor OA, Wright J, Moskowitz C et al (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non–Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23:676–684

    PubMed  Google Scholar 

  • Obeng EA, Carlson LM, Gutman DM et al (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orlowski RZ, Baldwin AS (2002) NF-κB as a therapeutic target in cancer. Trends Mol Med 8:385–389

    CAS  PubMed  Google Scholar 

  • Orlowski RZ, Eswara JR, Lafond-Walker A et al (1998) Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 58:4342–4348

    CAS  PubMed  Google Scholar 

  • Orlowski RZ, Small GW, Shi YY (2002a) Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. J Biol Chem 277:27864–27871

    CAS  PubMed  Google Scholar 

  • Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002b) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427

    CAS  PubMed  Google Scholar 

  • Orlowski RZ, Kuhn DJ, Small GW, Michaud C, Orlowski M (2005a) Identification of novel inhibitors that specifically target the immunoproteasome, and selectively induce apoptosis in multiple myeloma and other immunoproteasome-expressing model systems. Blood 106:76a (abstract 248)

    Google Scholar 

  • Orlowski RZ, Voorhees PM, Garcia RA et al (2005b) Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 105:3058–3065

    CAS  PubMed  Google Scholar 

  • Orlowski RZ, Zhuang SH, Parekh T et al (2006) DOXIL-MMY-3001 Study Investigators. The combination of pegylated liposomal doxorubicin and bortezomib significantly improves time to progression of patients with relapsed/refractory multiple myeloma compared with bortezomib alone: results from a planned interim analysis of a randomized phase III study. In: Updated data presented at the 2006 annual meeting of the American Society of Hematology. Blood, vol 108, p 124a

    Google Scholar 

  • Orlowski RZ, Stewart K, Vallone M et al (2007) Safety and antitumor efficacy of the proteasome inhibitor carfilzomib (PR-171) dosed for five consecutive days in hematologic malignancies: phase I results. Blood 110:127a (abstract 409)

    Google Scholar 

  • Palumbo A, Bringhen S, Caravita T et al (2006) Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet 367:825–831

    CAS  PubMed  Google Scholar 

  • Palumbo A, Ambrosini MT, Benevolo G et al (2007) Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 109:2767–2772

    CAS  PubMed  Google Scholar 

  • Palumbo A, Schlag R, Khuageva N et al (2008) Prolonged therapy with bortezomib plus melphalan–prednisone (VMP) results in improved quality and duration of response in the phase III VISTA study in previously untreated multiple myeloma (MM). Haematologica 93:83

    Google Scholar 

  • Papandreou CN, Daliani DD, Nix D et al (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121

    CAS  PubMed  Google Scholar 

  • Pautasso C, Bringhen S, Cerrato C, Magarotto V, Palumbo A (2013) The mechanism of action, pharmacokinetics, and clinical efficacy of carfilzomib for the treatment of multiple myeloma. Expert Opin Drug Metab Toxicol, 9 Jul 2013 (Epub ahead of print)

    Google Scholar 

  • Popat R, Goff L, Oakervee HE et al (2005) Changes in Mcl-1 and Bim expression with bortezomib and melphalan therapy for multiple myeloma. Blood 106:697a

    Google Scholar 

  • Popat R, Williams C, Cook M et al (2006) A phase I/ II trial of bortezomib, low dose intravenous melphalan and dexamethasone for patients with relapsed multiple myeloma. In: Updated data presented at the 2006 annual meeting of the American Society of Hematology. Blood, vol 108, p 1011a

    Google Scholar 

  • Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639

    CAS  PubMed  Google Scholar 

  • Reece DE, Piza G, Trudel S et al (2006) A phase I-II trial of bortezomib plus oral cyclophosphamide and prednisone for relapsed/refractory multiple myeloma. In: Updated data presented at the 2006 annual meeting of the American Society of Hematology. Blood, vol 108, p 1009a

    Google Scholar 

  • Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. New Engl J Med 348:2609–2617

    CAS  PubMed  Google Scholar 

  • Richardson P, Sonneveld P, Schuster M et al (2005a) Bortezomib continues to demonstrate superior efficacy compared with high-dose dexamethasone in relapsed multiple myeloma: updated results of the APEX trial. In: Updated data presented at the 2005 annual meeting of the American Society of Hematology. Blood, vol 106, p 715a

    Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW et al (2005b) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. New Engl J Med 352:2487–2498

    CAS  PubMed  Google Scholar 

  • Richardson PG, Barlogie B, Berenson J et al (2006a) Extended follow-up of a phase II trial in relapsed, refractory multiple myeloma: final time-to-event results from the SUMMIT trial. Cancer 106:1316–1319

    CAS  PubMed  Google Scholar 

  • Richardson PG, Briemberg H, Jagannath S et al (2006b) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120

    CAS  PubMed  Google Scholar 

  • Richardson PG, Jagannath S, Avigan DE et al (2006c) Lenalidomide plus bortezomib (Rev-Vel) in relapsed and/or refractory multiple myeloma (MM): final results of a multicenter phase 1 trial. In: Updated data presented at the 2006 annual meeting of the American Society of Hematology. Blood, vol 108, p 124a

    Google Scholar 

  • Richardson PG, Mitsiades C, Ghobrial I et al (2006d) Beyond single-agent bortezomib: combination regimens in relapsed multiple myeloma. Curr Opin Oncol 18:598–608

    CAS  PubMed  Google Scholar 

  • Richardson PG, Mitsiades C, Hideshima T, Anderson KC (2006e) Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 57:33–47

    CAS  PubMed  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster M et al (2007a) Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 110:3557–3560

    CAS  PubMed  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW et al (2007b) Safety and efficacy of bortezomib in high-risk and elderly patients with relapsed multiple myeloma. Br J Haematol 137:429–435

    CAS  PubMed  Google Scholar 

  • Richardson PG, Siegel D, Baz R, Kelley SL, Munshi NC, Laubach J, Sullivan D, Alsina M, Schlossman R, Ghobrial IM, Doss D, Loughney N, McBride L, Bilotti E, Anand P, Nardelli L, Wear S, Larkins G, Chen M, Zaki MH, Jacques C, Anderson KC (2013) Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood 121(11):1961–1967

    CAS  PubMed  Google Scholar 

  • Rifkin RM, Gregory SA, Mohrbacher A et al (2006) Pegylated liposomal doxorubicin, vincristine, and dexamethasone provide significant reduction in toxicity compared with doxorubicin, vincristine, and dexamethasone in patients with newly diagnosed multiple myeloma: a phase III multicenter randomized trial. Cancer 106:848–858

    CAS  PubMed  Google Scholar 

  • Rivett AJ, Hearn AR (2004) Proteasome function in antigen presentation: immunoproteasome complexes, peptide production, and interactions with viral proteins. Curr Protein Pept Sci 5:153–161

    CAS  PubMed  Google Scholar 

  • Robertson JD, Datta K, Biswal SS, Kehrer JP (1999) Heat-shock protein 70 antisense oligomers enhance proteasome inhibitor-induced apoptosis. Biochem J 344:477–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz S, Krupnik Y, Keating M et al (2006) The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol Cancer Ther 5:1836–1843

    CAS  PubMed  Google Scholar 

  • Ryan DP, O’Neil BH, Supko JG et al (2006) A phase I study of bortezomib plus irinotecan in patients with advanced solid tumors. Cancer 107:2688–2697

    CAS  PubMed  Google Scholar 

  • Sagaster V, Ludwig H, Kaufmann H et al (2007) Bortezomib in relapsed multiple myeloma: response rates and duration of response are independent of a chromosome 13q-deletion. Leukemia 21:164–168

    CAS  PubMed  Google Scholar 

  • San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. New Eng J Med 359:906–917

    CAS  PubMed  Google Scholar 

  • San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, Samoilova OS, Dmoszynska A, Abdulkadyrov KM, Delforge M, Jiang B, Mateos MV, Anderson KC, Esseltine DL, Liu K, Deraedt W, Cakana A, van de Velde H, Richardson PG (2013) Persistent overall survival benefit and no increased risk of second malignancies with bortezomib-melphalan-prednisone versus melphalan-prednisone in patients with previously untreated multiple myeloma. J Clin Oncol 31(4):448–455

    CAS  PubMed  Google Scholar 

  • Schmidt M, Hanna J, Elsasser S, Finley D (2005) Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 386:725–737

    CAS  PubMed  Google Scholar 

  • Shi YY, Small GW, Orlowski RZ (2006) Proteasome inhibitors induce a p38 mitogen-activated protein kinase (MAPK)-dependent anti-apoptotic program involving MAPK phosphatase-1 and Akt in models of breast cancer. Breast Cancer Res Treat 100:33–47

    CAS  PubMed  Google Scholar 

  • Shinohara K, Tomioka M, Nakano H et al (1996) Apoptosis induction resulting from proteasome inhibition. Biochem J 317:385–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sin N, Kim KB, Elofsson M et al (1999) Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 9:2283–2288

    CAS  PubMed  Google Scholar 

  • Small GW, Shi YY, Edmund NA et al (2004) Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Mol Pharmacol 66:1478–1490

    CAS  PubMed  Google Scholar 

  • Sonneveld P, Richardson PG, Schuster MW et al (2005) Bortezomib at first relapse is superior to high-dose dexamethasone and more effective than when given later in relapsed multiple myeloma. Haematologica 90:146–147

    Google Scholar 

  • Sonneveld P, Schmidt-Wolf IG, van der Holt B, El Jarari L, Bertsch U, Salwender H, Zweegman S, Vellenga E, Broyl A, Blau IW, Weisel KC, Wittebol S, Bos GM, Stevens-Kroef M, Scheid C, Pfreundschuh M, Hose D, Jauch A, van der Velde H, Raymakers R, Schaafsma MR, Kersten MJ, van Marwijk-Kooy M, Duehrsen U, Lindemann W, Wijermans PW, Lokhorst HM, Goldschmidt HM (2012) Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial. J Clin Oncol 30(24):2946–2955

    CAS  PubMed  Google Scholar 

  • Stapnes C, Doskeland AP, Hatfield K et al (2007) The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 136:814–828

    CAS  PubMed  Google Scholar 

  • Strauss SJ, Maharaj L, Hoare S et al (2006) Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor a response with clinical activity. J Clin Oncol 24:2105–2212

    CAS  PubMed  Google Scholar 

  • Strickland E, Hakala K, Thomas PJ, DeMartino GN (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J Biol Chem 275:5565–5572

    CAS  PubMed  Google Scholar 

  • Suvannasankha A, Smith GG, Juliar BE et al (2006) Weekly bortezomib/methylprednisolone is effective and well tolerated in relapsed multiple myeloma. Clin Lymphoma Myeloma 7:131–134

    CAS  PubMed  Google Scholar 

  • Teicher BA (2008) Newer cytotoxic agents: attacking cancer broadly. Clin Cancer Res 14:1650–1657

    Google Scholar 

  • Teoh G, Tan D, Hwang W et al (2006) Addition of bortezomib to thalidomide, dexamethasone and zoledronic acid (VTD-Z regimen) significantly improves complete remission rates in patients with relapsed/refractory multiple myeloma. In: Updated data presented at the 2006 annual meeting of the American Society of Clinical Oncology. J Clin Oncol, vol 24, p 683s

    Google Scholar 

  • Terpos E, Anagnostopoulos A, Heath D et al (2006) The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide (VMDT) is an effective regimen for relapsed/ refractory myeloma and reduces serum levels of Dickkopf-1, RANKL, MIP-1-alpha and angiogenic cytokines. In: Updated data presented at the 2006 annual meeting of the American Society of Hematology. Blood, vol 108, pp 1010a–1011a

    Google Scholar 

  • Treon SP, Hunter ZR, Matous J et al (2007) Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: results of WMCTG Trial 03–248. Clin Cancer Res 13:3320–3325

    CAS  PubMed  Google Scholar 

  • van de Donk NW, Lokhorst HM (2013) New developments in the management and treatment of newly diagnosed and relapsed/refractory multiple myeloma patients. Expert Opin Pharmacother 14(12):1569–1573

    PubMed  Google Scholar 

  • Vinitsky A, Michaud C, Powers JC, Orlowski M (1992) Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31:9421–9428

    CAS  PubMed  Google Scholar 

  • Vinitsky A, Cardozo C, Sepp-Lorenzino L, Michaud C, Orlowski M (1994) Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J Biol Chem 269:29860–29866

    CAS  PubMed  Google Scholar 

  • Voorhees PM, Dees EC, O’Neil B, Orlowski RZ (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 9:6316–6325

    CAS  PubMed  Google Scholar 

  • Voorhees PM, Chen Q, Kuhn DJ et al (2007) Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 13:6469–6478

    CAS  PubMed  Google Scholar 

  • Voortman J, Smit EF, Honeywell R et al (2007) A parallel dose-escalation study of weekly and twice-weekly bortezomib in combination with gemcitabine and cisplatin in the first-line treatment of patients with advanced solid tumors. Clin Cancer Res 13:3642–3651

    CAS  PubMed  Google Scholar 

  • Wang T (2003) The 26S proteasome system in the signaling pathways of TGF-beta superfamily. Front Biosci 8:d1109–d1127

    CAS  PubMed  Google Scholar 

  • Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kB. Science 274:784–787

    CAS  PubMed  Google Scholar 

  • Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kB. Nat Med 5:412–417

    PubMed  Google Scholar 

  • Wechalekar A, Gillmore J, Lachmann H, Offer M, Hawkins P (2006) Efficacy and safety of bortezomib in systemic AL amyloidosis-a preliminary report. Blood 108:42a (abstract 129)

    Google Scholar 

  • Wojcikiewicz RJ (2004) Regulated ubiquitination of proteins in GPCR-initiated signaling pathways. Trends Pharmacol Sci 25:35–41

    CAS  PubMed  Google Scholar 

  • Zangari M, Barlogie B, Burns MJ et al (2005) Velcade (V)-thalidomide (T)-dexamethasone (D) for advanced and refractory multiple myeloma (MM): long-term follow-up of phase I-II trial UARK 2001–37: superior outcome in patients with normal cytogenetics and no prior T. In: Updated data presented at the 2005 Annual Meeting of the American Society of Hematology. Blood, vol 106, p 717a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Einsele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Einsele, H. (2014). Bortezomib. In: Martens, U. (eds) Small Molecules in Oncology. Recent Results in Cancer Research, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54490-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54490-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54489-7

  • Online ISBN: 978-3-642-54490-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics