Skip to main content

Parkinson Dementia: PET Findings

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

Degeneration of subcortical systems such as the dopaminergic nigrostriatal projection and the basal forebrain cholinergic corticopetal system as well as cortical neurodegeneration associated with depositions of α-synuclein and β-amyloid pathology are likely contributors to cognitive impairment in Parkinson disease (PD). Glucose metabolic studies have shown mixed subcortical and cortical changes in PD dementia. For example, incident dementia in idiopathic PD is heralded by decreased metabolism of visual association (Brodmann area 18) and posterior cingulate cortices with additional involvement of the caudate nucleus. Subsequent progression to dementia is associated with mixed subcortical, especially thalamic, and widespread cortical changes that involve the mesiofrontal lobes also. Neurotransmitter-specific PET imaging shows early and prominent nigrostriatal dopaminergic losses in PD, with no major differences in PD dementia. Therefore, caudate nucleus, limbic, and mesofrontal dopaminergic denervations do not appear alone sufficient for development of full-blown PD dementia. In contrast, cholinergic imaging studies have shown relatively mild losses in PD without dementia, but more prominent decreases in PD dementia. This suggests significant cholinergic pathology underlying progressive cognitive decline in PD. Average dopaminergic and cholinergic denervation does not appear to differ between PD with dementia (PDD) and dementia with Lewy bodies (DLB), supporting the view that PDD and DLB lie on a common disease spectrum. In vivo imaging studies show variable β-amyloid binding in PD dementia with prevalence of pathologic amyloid deposition higher in DLB compared to PDD. However, despite the relatively lower binding levels compared to AD, β-amyloid deposition contributes to cognitive impairment early in the course of cognitive decline in PD, suggesting a lower symptomatic threshold for the amyloid deposition compared to normal aging and Alzheimer disease (AD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer disease

DLB:

Dementia with Lewy bodies

DTBZ:

Dihydrotetrabenazine

FDG:

Fluorodeoxyglucose

FDOPA:

6-Fluorodopa

MP4A:

Methyl-4-piperidyl acetate

PD:

Parkinson disease

PDD:

Parkinson disease with dementia

PET:

Positron emission tomography

PMP:

Methyl-4-piperidinyl propionate

References

  • Aarsland D, Zaccai J, Brayne C (2005) A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord 20:1255–1263

    Article  PubMed  Google Scholar 

  • Albin RL, Minoshima S, D’Amato CJ et al (1996) Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology 47:462–466

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Alves G, Larsen JP, Emre M et al (2006) Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov Disord 21:1123–1130

    Article  PubMed  Google Scholar 

  • Ballard C, Ziabreva I, Perry R et al (2006) Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67:1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  • Bohnen NI, Albin RL (2011) White matter lesions in Parkinson disease. Nat Rev Neurol 7:229–236

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohnen NI, Minoshima S, Giordani B et al (1999) Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 52:541–546

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Kaufer DI, Ivanco LS et al (2003) Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60:1745–1748

    Article  PubMed  Google Scholar 

  • Bohnen NI, Kaufer DI, Hendrickson R et al (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253:242–247

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Muller ML, Koeppe RA et al (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohnen NI, Koeppe RA, Minoshima S et al (2011) Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 52:848–855

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Mueller MLTM, Kotagal V et al (2012) Heterogeneity of cholinergic denervation in Parkinson disease. J Cereb Blood Flow Metab 32:1609–1617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burack MA, Hartlein J, Flores HP et al (2010) In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology 74:77–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burke JF, Albin RL, Koeppe RA et al (2011) Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography. Brain 134:1647–1657

    Article  PubMed Central  PubMed  Google Scholar 

  • Churchyard A, Lees A (1997) The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinson’s disease. Neurology 49:1570–1576

    Article  CAS  PubMed  Google Scholar 

  • Compta Y, Parkkinen L, O’Sullivan SS et al (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134:1493–1505

    Article  PubMed  Google Scholar 

  • Edison P, Rowe CC, Rinne JO et al (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C] PIB positron emission tomography. J Neurol Neurosurg Psychiatry 79:1331–1338

    Article  CAS  PubMed  Google Scholar 

  • Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–237

    Article  CAS  PubMed  Google Scholar 

  • Foster ER, Campbell MC, Burack MA et al (2010) Amyloid imaging of Lewy body-associated disorders. Mov Disord 25:2516–2523

    Article  PubMed Central  PubMed  Google Scholar 

  • Frey KA, Koeppe RA, Kilbourn MR et al (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40:873–884

    Article  CAS  PubMed  Google Scholar 

  • Frost JJ, Rosier AJ, Reich SG et al (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 34:423–431

    Article  CAS  PubMed  Google Scholar 

  • Gagnon JF, Postuma RB, Mazza S et al (2006) Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases. Lancet Neurol 5:424–432

    Article  PubMed  Google Scholar 

  • Garnett ES, Firnau G, Chan PKH et al (1978) [18 F] fluoro-dopa, an analogue of dopa, and its use in direct measurement of storage, degeneration, and turnover of intracerebral dopamine. Proc Natl Acad Sci U S A 75:464–467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibb W (1989) Dementia and Parkinson’s disease. Br J Psychiatry 154:596–614

    Article  CAS  PubMed  Google Scholar 

  • Gilman S, Koeppe RA, Nan B et al (2010) Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology 74:1416–1423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711

    Article  CAS  PubMed  Google Scholar 

  • Gomperts SN, Rentz DM, Moran E et al (2008) Imaging amyloid deposition in Lewy body diseases. Neurology 71:903–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heckers S, Geula C, Mesulam M (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82

    Article  CAS  PubMed  Google Scholar 

  • Hely MA, Reid WG, Adena MA et al (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23:837–844

    Article  PubMed  Google Scholar 

  • Hilker R, Thomas AV, Klein JC et al (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C et al (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A 84:5976–5980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holthoff VA, Vieregge P, Kessler J et al (1994) Discordant twins with Parkinson’s disease: positron emission tomography and early signs of impaired cognitive circuits. Ann Neurol 36:176–182

    Article  CAS  PubMed  Google Scholar 

  • Hu XS, Okamura N, Arai H et al (2000) 18F-fluorodopa PET study of striatal dopamine uptake in the diagnosis of dementia with Lewy bodies. Neurology 55:1575–1577

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Tang C, Feigin A et al (2007) Changes in network activity with the progression of Parkinson’s disease. Brain 130:1834–1846

    Article  PubMed  Google Scholar 

  • Irvine GB, El-Agnaf OM, Shankar GM et al (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14:451–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito K, Nagano-Saito A, Kato T et al (2002) Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[18 F] fluoro-L-dopa PET study. Brain 125:1358–1365

    Article  PubMed  Google Scholar 

  • Jellinger KA (2000) Morphological substrates of mental dysfunction in Lewy body disease: an update. J Neural Transm 59(Suppl):185–212

    CAS  Google Scholar 

  • Jellinger KA (2006) The morphological basis of mental dysfunction in Parkinson’s disease. J Neurol Sci 248:167–172

    Article  CAS  PubMed  Google Scholar 

  • Johansson A, Savitcheva I, Forsberg A et al (2008) [(11) C] – PIB imaging in patients with Parkinson’s disease: preliminary results. Parkinsonism Relat Disord 14:345–347

    Article  CAS  PubMed  Google Scholar 

  • Kalaitzakis ME, Graeber MB, Gentleman SM et al (2008) Striatal beta-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol 67:155–161

    Article  PubMed  Google Scholar 

  • Kehagia AA, Barker RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 9:1200–1213

    Article  PubMed  Google Scholar 

  • Klein JC, Eggers C, Kalbe E et al (2010) Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74(11):885–892

    Article  CAS  PubMed  Google Scholar 

  • Koeppe RA, Gilman S, Joshi A et al (2005) 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. J Nucl Med 46:936–944

    CAS  PubMed  Google Scholar 

  • Kotagal V, Albin RL, Muller MLTM et al (2012) Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol 71(4):560–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovari E, Gold G, Herrmann FR et al (2003) Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson’s disease. Acta Neuropathol (Berlin) 106:83–88

    Google Scholar 

  • Lee MS, Rinne JO, Marsden CD (2000) The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J 41:167–184

    CAS  PubMed  Google Scholar 

  • Luis CA, Barker WW, Gajaraj K et al (1999) Sensitivity and specificity of three clinical criteria for dementia with Lewy bodies in an autopsy-verified sample. Int J Geriatr Psychiatry 14:526–533

    Article  CAS  PubMed  Google Scholar 

  • Maetzler W, Reimold M, Liepelt I et al (2008) [(11) C] PIB binding in Parkinson’s disease dementia. Neuroimage 39:1027–1033

    Article  PubMed  Google Scholar 

  • Maetzler W, Liepelt I, Reimold M et al (2009) Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis 34:107–112

    Article  CAS  PubMed  Google Scholar 

  • Mahler ME, Cummings JL (1990) Alzheimer disease and the dementia of Parkinson disease: comparative investigations. Alzheimer Dis Assoc Disord 4:133–149

    Article  CAS  PubMed  Google Scholar 

  • Marder K (2010) Cognitive impairment and dementia in Parkinson’s disease. Mov Disord 25(Suppl 1):S110–S116

    Article  PubMed  Google Scholar 

  • Marion MH, Qurashi M, Marshall G et al (2008) Is REM sleep behaviour disorder (RBD) a risk factor of dementia in idiopathic Parkinson’s disease? J Neurol 255:192–196

    Article  PubMed  Google Scholar 

  • Mattis PJ, Tang CC, Ma Y et al (2011) Network correlates of the cognitive response to levodopa in Parkinson disease. Neurology 77:858–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKeith IG, Galasko D, Kosaka K et al (1996) Consensus guideline for the clinical and pathological diagnosis of dementia with Lewy bodies (LBD): report of the Consortium on DLB International Workshop. Neurology 47:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 11:43–49

    Article  PubMed  Google Scholar 

  • Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240

    Article  CAS  PubMed  Google Scholar 

  • Minoshima S, Foster NL, Kuhl DE (1994) Posterior cingulate cortex in Alzheimer’s disease. Lancet 344:895

    Article  CAS  PubMed  Google Scholar 

  • Minoshima S, Foster NL, Sima AA et al (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50:358–365

    Article  CAS  PubMed  Google Scholar 

  • Nagano-Saito A, Kato T, Arahata Y et al (2004) Cognitive- and motor-related regions in Parkinson’s disease: FDOPA and FDG PET studies. Neuroimage 22:553–561

    Article  PubMed  Google Scholar 

  • Perry EK, Curtis M, Dick DJ et al (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48:413–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrou M, Bohnen NI, Muller MLTM et al (2012) Aβ-amyloid deposition and cognition in Parkinson disease patients at risk for development of dementia. Neurology 79(11):1161–1167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polito C, Berti V, Ramat S et al (2012) Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson’s disease. Neurobiol Aging 33(206):e29–e39

    PubMed  Google Scholar 

  • Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725

    Article  CAS  PubMed  Google Scholar 

  • Ruberg M, Rieger F, Villageois A et al (1986) Acetylcholinesterase and butyrylcholinesterase in frontal cortex and cerebrospinal fluid of demented and non-demented patients with Parkinson’s disease. Brain Res 362:83–91

    Article  CAS  PubMed  Google Scholar 

  • Shimada H, Hirano S, Shinotoh H et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73:273–278

    Article  CAS  PubMed  Google Scholar 

  • Shinotoh H, Namba H, Yamaguchi M et al (1999) Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 46:62–69

    Article  CAS  PubMed  Google Scholar 

  • Siderowf A, Xie SX, Hurtig H et al (2010) CSF amyloid beta 1–42 predicts cognitive decline in Parkinson disease. Neurology 75:1055–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song IU, Kim YD, Cho HJ et al (2013) An FP-CIT PET Comparison of the differences in dopaminergic neuronal loss between idiopathic Parkinson disease with dementia and without dementia. Alzheimer Dis Assoc Disord 27(1):51–55

    Article  PubMed  Google Scholar 

  • Taylor JP, Rowan EN, Lett D et al (2008) Poor attentional function predicts cognitive decline in patients with non-demented Parkinson’s disease independent of motor phenotype. J Neurol Neurosurg Psychiatry 79:1318–1323

    Article  PubMed  Google Scholar 

  • Tsigelny IF, Crews L, Desplats P et al (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3:e3135

    Article  PubMed Central  PubMed  Google Scholar 

  • Vander Borght T, Minoshima S, Giordani B et al (1997) Cerebral metabolic differences in Parkinson’s and Alzheimer’s disease matched for dementia severity. J Nucl Med 38:797–802

    CAS  PubMed  Google Scholar 

  • Villemagne VL, Okamura N, Pejoska S et al (2011) In vivo assessment of vesicular monoamine transporter type 2 in dementia with Lewy bodies and Alzheimer disease. Arch Neurol 68:905–912

    Article  PubMed  Google Scholar 

  • Villemagne VL, Okamura N, Pejoska S et al (2012) Differential diagnosis in Alzheimer’s disease and dementia with Lewy bodies via VMAT2 and amyloid imaging. Neurodegener Dis 10(1–4):161–165

    Article  CAS  PubMed  Google Scholar 

  • Williams-Gray CH, Hampshire A, Barker RA et al (2008) Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain 131:397–408

    Article  PubMed  Google Scholar 

  • Williams-Gray CH, Evans JR, Goris A et al (2009) The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain 132:2958–2969

    Article  PubMed  Google Scholar 

  • Womack KB, Diaz-Arrastia R, Aizenstein HJ et al (2011) Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol 68:329–337

    Article  PubMed Central  PubMed  Google Scholar 

  • Zweig RM, Jankel WR, Hedreen JC et al (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research support from the NIH, the Department of Veterans Affairs, and the Michael J. Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaas I. Bohnen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bohnen, N.I., Frey, K.A. (2014). Parkinson Dementia: PET Findings. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics