Skip to main content

Methoden der Trauma-Biomechanik

  • Chapter
  • First Online:
Trauma-Biomechanik

Part of the book series: VDI-Buch ((VDI-BUCH))

Zusammenfassung

Die Arbeit in der Trauma-Biomechanik wird durch einige Randbedingungen eingeschränkt, die in dieser Form in anderen Bereichen der Ingenieurwissenschaften und der Life Sciences nicht oder nur zu einem geringen Teil vorhanden sind. Experimente an Menschen, bei denen verletzungsinduzierende Belastungen auftreten können, sind ausgeschlossen. Tierversuche sind nur sehr eingeschränkt anwendbar, da es schwierig bis unmöglich ist, Verletzungssituationen vom Tier auf den Menschen zu übertragen. Auch ist es fraglich, in welchem Grade Tiermodelle die Biomechanik des Menschen repräsentieren. Kosten und insbesondere ethische Überlegungen tragen weiter dazu bei, dass solche Experimente heute nur noch selten und nur unter besonderen Bedingungen durchgeführt werden. Dementsprechend sind die in der Trauma-Biomechanik zur Anwendung kommenden Methoden grösstenteils indirekt. Dazu gehören statistische Ansätze und Feldstudien, Unfallrekonstruktionen, verschiedene biomechanische Experimente, standardisierte Testverfahren sowie numerische Simulationen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. AAAM (2005) AIS 2005: The injury scale. In: Gennarelli T, Wodzin E (Hrsg) Association of Advancement of Automotive Medicine

    Google Scholar 

  2. Appel H, Krabbel G, Vetter D (2002) Unfallforschung, Unfallmechanik und Unfallrekonstruktion. Verlag Information Ambs GmbH, Kippenheim, Germany

    Book  Google Scholar 

  3. Baker S, O’Neill B (1976) The injury severity score: an update. J Trauma 11:882–885

    Article  Google Scholar 

  4. Bathe K (2007) Finite element procedures. Prentice-Hall India (ISBN 978–8120310759)

    Google Scholar 

  5. Beason D, Dakin G, Lopez R, Alonso J, Bandak F, Eberhardt A (2003) Bone mineral density correlates with fracture load in experimental side impacts of the pelvis. J Biomech 36:219–227

    Article  Google Scholar 

  6. Campbell F, Woodford M, Yates D (1994) A comparion of injury impairment scale scores and physician’s estimates of impairment following injury to the head, abdomen and lower limbs. Proceedings 38th AAAM Conference

    Google Scholar 

  7. Carsten O, Day J (1988) Injury priority analysis. NHTSA Technical Report DOT HS 807 224

    Google Scholar 

  8. Carlsson A, Chang F, Lemmen P, Kullgren A, Schmitt K-U, Linder A, Svensson M (2012) EvaRID – A 50th percentile female rear impact finite element dummy model. Proceedings IRCOBI Conf., paper no. IRC-12–32, S 249–262

    Google Scholar 

  9. Chawla M, Hildebrand F, Pape H, Giannoudis P (2004) Predicting outcome after multiple trauma: which scoring system? Injury 35:347–358

    Article  Google Scholar 

  10. Damm R, Schnottale B, Lorenz B (2006) Evaluation of the biofidelity of the WorldSID and the ES-2 on the basis of PMHS data. Proceedings IRCOBI Conf., S 225–237

    Google Scholar 

  11. Gesac (2013) http://www.gesacinc.com/. Zugegriffen: 12 Okt 2013

  12. Gutsche A, Tomasch E, Sinz W, Levallois I, Alonso S, Lemmen P, Linder A, Steffan H (2013) Improve assessment and enhance safety for the evaluation of whiplash protection systems addressing male and female occupants in different seat configurations by introducing virtual methods in consumer tests. Proceedings IRCOBI Conf., paper no. IRC-13–16, S 77–90

    Google Scholar 

  13. Holzapfel G, Ogden R (2006) Mechanics of biological tissues. Springer Publ., Berlin (ISBN: 978-3-540-25194-1)

    Book  Google Scholar 

  14. Humanetics (2013) http://www.humaneticsatd.com/. Zugegriffen: 12 Oct 2013

  15. Iwamoto M, Kisanuki Y, Watanabe I, Furusu K, Miki K, Hasegawa J (2002) Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction. Proceedings IRCOBI Conf., S 31–42

    Google Scholar 

  16. Linder A, Schick S, Hell W, Svensson M, Carlsson A, Lemmen P, Schmitt KU, Gutsche A, Tomasch E (2013) ADSEAT – Adaptive seat to reduce neck injuries for female and male occupants. Accid Anal Prev 60:334–343. (doi:pii: S 0001–4575(13)00100–0. 10.1016/j.aap.2013.02.043).

    Article  Google Scholar 

  17. Liu IS (2002) Continuum mechanics. Springer Publ., Berlin (ISBN: 978-3-540-43019-3)

    Book  MATH  Google Scholar 

  18. Malliaris A (1985) Harm causation and ranking in car crashes, SAE (85090)

    Google Scholar 

  19. Mertz HJ, Irwin AL, Prasad P (2003) Biomechanical and scaling bases for frontal and side impact injury assessment reference values. Stapp Car Crash J 47:155–188

    Google Scholar 

  20. Muser M, Zellmer H, Walz F, Hell W, Langwieder K (1999) Test procedure for the evaluation of the injury risk to the cervical spine in a low speed rear end impact. Proposal for the ISO/ TC22 N 2071/ ISO/TC22/SC10 (collison test procedures), Report.

    Google Scholar 

  21. Niederer P (2010) Mathematical foundations of biomechanics. Crit Rev Biomed Eng 38(6):355–577

    Article  Google Scholar 

  22. Ono K, Kaneoka K (1997) Motion analysis of human cervical vertebrae during low speed rear impacts by the simulated sled. Proceedings IRCOBI Conf., S 223–237

    Google Scholar 

  23. Schmitt K-U, Muser M, Walz F, Niederer P (2002) On the role of fluid-structure interaction in the biomechanics of soft tissue neck injuries. Traffic Inj Prev 3(1):65–73

    Article  Google Scholar 

  24. Schmitt K-U, Muser M, Vetter D, Walz F (2003) Whiplash injuries: cases with a long period of sick leave need biomechanical assessment. Eur Spine 12(3):247–254

    Google Scholar 

  25. Schmitt K-U, Beyeler F, Muser M, Niederer P (2004) A visco-elastic foam as head restraint material – experiments and numerical simulations using a BioRID model. Traffic Inj Prev 9(4):341–348

    Google Scholar 

  26. Spitzer W, Skovron M, Salmi L, Cassiy J, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the quebec task force on whiplash associated disorders: redefining “whiplash“ and its management. Spine 20(8S):3–73

    Google Scholar 

  27. Stitzel J, Cormier J, Barretta J, Kennedy E, Smith E, Rath A, Duma S, Matsuoka F (2003) Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction. Stapp Car Crash J 47:243–265

    Google Scholar 

  28. Teasdale G, Jennett B. (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    Article  Google Scholar 

  29. Zeidler F, Pletschen B, Mattern R, Alt B, Miksch T, Eichendorf W, Reiss S (1989) Development of a new injury cost scale. Proceedings 33rd Annual Conf. AAAM

    Google Scholar 

  30. Zienkiewicz O, Taylor R (1994) The finite element method. McGraw-Hill Book Company, London (ISBN 0-07-084175-6)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Uwe Schmitt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, KU., Niederer, P., Cronin, D., Muser, M., Walz, F. (2014). Methoden der Trauma-Biomechanik. In: Trauma-Biomechanik. VDI-Buch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54281-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54281-7_2

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54280-0

  • Online ISBN: 978-3-642-54281-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics