Skip to main content

Ballistisches Trauma und Verletzungen durch Explosionen

  • Chapter
  • First Online:
Trauma-Biomechanik

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 5224 Accesses

Zusammenfassung

Sowohl im militärischen wie auch im zivilen Umfeld kommt es zu Verletzungen durch Schüsse und Explosionen. Ein ballistisches Trauma beschreibt dabei die Interaktion zwischen einem Projektil und dem menschlichen Körper; penetrierende oder stumpfe Traumata können die Folge sein. Verletzungen durch Explosionen beziehen sich auf die Detonation eines Sprengsatzes und die nachfolgende komplexe Interaktion des Menschen mit der eigentlichen Detonationswelle, etwaigen Splittern des explodierenden Sprengsatzes und umherfliegender Gegenstände bzw. Trümmern. Die Abgrenzung zwischen ballistischem Trauma und Verletzungen durch Explosionen ist nicht immer ganz eindeutig, es bestehen gewisse Überlappungen. Verletzungen der unteren Extremitäten, des Thorax und des Kopfes treten beispielsweise häufig im Zuge von Explosionen auf, obschon auch andere Körperregionen betroffen sein können. Genauso können alle Körperregionen auch durch Schüsse verletzt werden, obschon hier Schutzausrüstungen zum Einsatz kommen, die sich vor allem auf lebenswichtige Organe wie Hirn, Herz oder Lunge konzentrieren. Forschungsschwerpunkte in diesen Bereichen sind u. a. Kopfverletzungen, der Schutz von Fahrzeuginsassen bei Explosionen und der Schutz von Kopf, Gesicht und Thorax vor Schussverletzungen sowie Verletzungen durch Splitter, wobei dies auch stumpfe Traumata umfasst, die trotz Tragen von Schutzausrüstung entstehen können (z. B. wenn die Schutzausrüstung von außen belastet wird).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. AAAM (2005) AIS 2005: The injury scale. In: Gennarelli T, Wodzin E (Hrsg) Association of Advancement of Automotive Medicine

    Google Scholar 

  2. Axelsson H, Yelverton JT (1994) Chest wall velocity as a predictor of non-auditory blast injury in a complex wave environment. 7th International Symposium of Weapons Traumatology and Wound Ballistics. St. Petersburg, Russia

    Google Scholar 

  3. Baker W (1973) Explosions in air. University of Texas Press, USA

    Google Scholar 

  4. Bangash M (1993) Impact and explosion: structural analysis and design. Blackwell Scientific Publications, Great Britain

    Google Scholar 

  5. Bass C, Rafaels K, Salzar R (2006) Pulmonary injury risk assessment for short-duration blasts. Personal Armour Systems Symposium (PASS), Leeds

    Google Scholar 

  6. Bergeron D, Walker R, Coffey C (1998) Detonation of 100-gram anti-personnel mine surrogate charges in Sand, report number SR 668. Defence Research Establishment Suffield, Canada

    Google Scholar 

  7. Bowen I, Fletcher E, Richmond D (1968) Estimate of man’s tolerance to the direct effects of air blast. Technical report, DASA-2113. Defense Atomic Support Agency, Department of Defence, Washington, D.C.

    Google Scholar 

  8. Bulson P (1997) Explosive loading of engineering structures. Taylor & Francis, New York.

    Google Scholar 

  9. Clemedson C (1956) Blast injury. Physiol Rev 36(3):336–54

    Google Scholar 

  10. Cooper G, Dudley H (1997) Scientific foundations of trauma. Butterworth-Heinemann Publ, Oxford

    Google Scholar 

  11. Coupland R (1993) War wounds of limbs – surgical management. Butterworth Heineman, Oxford

    Google Scholar 

  12. Coupland R, Korver A (1991) Injuries from antipersonnel mines: the experience of the international committee of the Red Cross. Br Med J 303:1509–1512

    Article  Google Scholar 

  13. Croft J, Longhurst D (2007) HOSDB Body Armour Standards for UK Police (2007) Part 2: ballistic resistance. Publication No. 39/07/B. http://www.bsst.de/content/PDF/39-07-B_-_HOSDB_Body_Armour1.pdf. Zugegriffen: 22. Sept. 2013.

  14. Cronin DS, Williams KV, Bass CR, Magnan P, Dosquet F, Bergeron D, van Bree J (2003) Test methods for protective footwear against AP mine blast. NATO Joint AVT-HFM Symposium. Koblenz

    Google Scholar 

  15. Cronin DS, Greer A, Williams KV, Salisbury C (2004) Numerical modeling of blast trauma to the human torso. Personal Armour Systems Symposium (PASS). The Hague

    Google Scholar 

  16. Cronin DS, Williams KV, Salisbury C (2011) Development and evaluation of a physical surrogate leg to predict landmine injury. J Mil Med 176(12):1408–1416

    Article  Google Scholar 

  17. den Reijer P (1991) Impact on ceramic faced armour. PhD thesis, Technical University Delft, Delft

    Google Scholar 

  18. Dobratz B, Crawford P (1985) Properties of chemical explosives and explosives simulants. LLNL explosives handbook, UCRL-52997, Lawrence Livermore Laboratory, Livermore

    Google Scholar 

  19. Fackler M (1987) What’s wrong with wound ballistics literature and why. US Army Medical Research and Development Command

    Google Scholar 

  20. Fackler M, Malinowski J (1988) Ordnance gelatin for ballistic studies. Am J Forensic Med Pathol 9:218–219

    Article  Google Scholar 

  21. Flynn M (2009) State of the insurgency – trends, intentions and objectives. ISAF, Afghanistan

    Google Scholar 

  22. Gibbs T, Popolato A (1980) LASL explosive property data. University of California Press, California

    Google Scholar 

  23. Glasner J (2007) The halifax explosion: surviving the blast that shook a nation. Altitude Pub, Canmore

    Google Scholar 

  24. Gupta R, Przekwas A (2013) Mathematical models of blast induced TBI: current status, challenges and prospects. Front Neurol 4(59):1–12

    Google Scholar 

  25. Haladuick T, Cronin DS, Lockhart P, Singh D, Bouamoul A, Ouellet S, Dionne JP (2012) Head kinematics resulting from simulated blast loading scenarios. Personal Armour Systems Symposium (PASS), Nuremberg

    Google Scholar 

  26. Hetherington J, Smith P (1994) Blast and ballistic loading of structures. Butterworth-Heinemann, Burlington

    Google Scholar 

  27. Hyde D (1998) Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1. Fundamentals of Protective Design for Conventional Weapons (User’s guide). Report ADA195867. Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg

    Google Scholar 

  28. Jussila J (2004) Preparing ballistic gelatine – review and proposal for a standard method. Forensic Sci Int 141:91–98

    Article  Google Scholar 

  29. Kingery C, Bulmash G (1984) Airblast parameters from TNT spherical air burst and hemispherical surface burst, report ARBL-TR-02555, U.S. Army BRL, Aberdeen Proving Ground

    Google Scholar 

  30. Knudsen P (2010) NATO task group on behind armour blunt trauma (RTO-TR-HFM-024). Thoracic response to undefeated body armour, report RTO-TR-IST-999

    Google Scholar 

  31. Krug E (Ed) (2002) World report on violence and health, World Health Organization, Geneva. http://www.who.int/violence_injury_prevention/violence/en/. Zugegriffen: 22. Sept. 2013

  32. Lockhart P, Cronin, DS (2013) Helmet foam evaluation to mitigate head response from primary blast exposure. Computer methods in biomechanics and biomedical engineering, Taylor and Francis. http://dx.doi.org/10.1080/10255842.2013.829460

  33. Mahoney PF, Ryan J, Brooks A, Schwab CW (2005) Ballistic trauma: a practical guide, 2nd edn. Springer

    Google Scholar 

  34. Makris A, Dionne JP, Mitric B (2004) Innovative protective helmet for chem-bio/blast threats. International Soldier Systems Conference (ISSC), Boston

    Google Scholar 

  35. Manseau J, Williams K, Dionne JP, Levine J (2006) Response of the Hybrid III dummy subjected to free-field blasts – focussing on tertiary blast injuries. MABS 2006

    Google Scholar 

  36. Marsh S (1980) LASL shock hugoniot data. University of California Press, California

    Google Scholar 

  37. Mayorga M (1997) The pathology of primary blast overpressure injury. Toxicology 121(1):17–28

    Article  Google Scholar 

  38. Meyers M (1994) Dynamic behavior of materials. Wiley, Toronto

    Book  MATH  Google Scholar 

  39. Molde A, Naevin J, Coupland R (2001) Care in the field for victims of weapons of war. International Committee of the Red Cross, Geneva

    Google Scholar 

  40. Nechaev E, Gritsanov A, Fomin N, Minnullin I (1995) Mine blast trauma – experience from the war in Afghanistan. Russian Ministry of Public Health and Medical Industry, Russian R.R. Vreden Research Institute of Traumatology, translated from Russian by the Council Communication, Stockholm

    Google Scholar 

  41. Needham C, Weiss G, Przekwas A, Tan X, Merkle A, Iyer K (2013) Challenges in measuring and modeling whole body blast effects. http://ftp.rta.nato.int/public//PubFullText/RTO/MP/RTOMP-HFM-207///MP-HFM-207-12.doc. Zugegriffen: 20. Sept. 2013

  42. Nelson M (1970) Underwater blast injury – a review of the literature. Report Number 646, Bureau of Medicine and Surgery, Navy Department. Research Work Unit MF099

    Google Scholar 

  43. Nerenberg J, Dionne JP, Makris A, Fisher G (2002) Evaluation of the ABS-LPU ensemble for compliance with U.S. Army Advanced Bomb Suit Program. UXO/Countermine Forum, Orlando

    Google Scholar 

  44. NIJ (2008) National Institute of Justice NIJ Standard-0101.06 Ballistic Resistance of Body Armor. http://www.nij.gov/nij/pubs-sum/223054.htm. Zugegriffen: 20. Sept. 2013

  45. Rafaels K, Bass C, Panzer M, Salzar R (2010) Pulmonary injury risk assessment for long-duration blasts: a meta-analysis. J Trauma 69(2):368–374

    Article  Google Scholar 

  46. Ritzel D, Parks SA, Roseveare J, Rude G, Sawyer T (2011) Experimental blast simulation for injury studies. HFM-207 NATO, Halifax

    Google Scholar 

  47. Sellier K, Kneubuehl B (1994) Wound Ballistics and the scientific background. Elsevier, ISBN 0-444-81511-2

    Google Scholar 

  48. Singh D, Cronin DS, Lockhart P, Haladuick T, Bouamoul A, Dionne JP (2012) Evaluation of head response to blast using sagittal and transverse finite element head models. Personal Armour Systems Symposium (PASS), Nuremberg

    Google Scholar 

  49. Small Arms Survey (2012) Tracking national homicide rates: generating estimates using vital registration data, Armed Violence: Issue Brief, Number 1. http://www.smallarmssurvey.org/fileadmin/docs/G-Issue-briefs/SAS-AVD-IB1-tracking-homicide.pdf. Zugegriffen: 20. Sept. 2013

  50. Small Arms Survey (2013a) Conflict armed violence, armed violence. http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence.html. Zugegriffen: 20. Sept. 2013

  51. Small Arms Survey (2013b) Indirect conflict deaths, armed violence. http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence/indirect-conflict-deaths.html. Zugegriffen: 20. Sept. 2013

  52. Stuhmiller J, Ho K, Vorst M, Dodd K, Fitzpatrick T, Mayorga M (1996) A model of blast overpressure injury to the lung. J Biomech 29:227–234

    Article  Google Scholar 

  53. Thom C, Cronin DS (2009) Shock wave amplification by fabric materials. Shock Waves 19(1):39–48

    Article  Google Scholar 

  54. US Department of the Army (1967) Explosives and demolitions. Headquarters Department of the Army, Washington, D.C., Field Manual 5–25

    Google Scholar 

  55. US Department of the Army (1990, Nov.) Structures to resist the effects of accidental explosions. Technical Manual 5-1300

    Google Scholar 

  56. Wightman J, Gladish S (2001) Explosions and blast injuries. Ann Emerg Med 37(6):664–78

    Article  Google Scholar 

  57. Wilbeck J (1978) Impact behavior of low strength projectiles, Air Force Materials Lab Wright-Patterson AFB OH, 7/1978

    Google Scholar 

  58. Wilkins M (1978) Mechanics of penetration and perforation. Int J Eng Sci 16:793–807

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Uwe Schmitt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, KU., Niederer, P., Cronin, D., Muser, M., Walz, F. (2014). Ballistisches Trauma und Verletzungen durch Explosionen. In: Trauma-Biomechanik. VDI-Buch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54281-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54281-7_10

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54280-0

  • Online ISBN: 978-3-642-54281-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics