Skip to main content

Experimental Determination of Thin Film Optical Constants

  • Chapter
  • First Online:
Optical Coatings

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 54))

  • 4540 Accesses

Abstract

Focus is set on the spectrophotometric characterization of optical coatings. Standard techniques for deriving optical constants of single films on substrates from ex situ transmission and reflection measurements are discussed in full detail. In situ transmission measurements and shift measurements complete the treatment. Examples include dielectric coatings, transparent conductive oxides, and metal coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Ristau, Standardization in Optics Characterization, in: International Trends in Applied Optics V, ed. by K.H. Guenther, (SPIE Press, Bellingham, 2002), pp. 165–186

    Google Scholar 

  2. S.L. Storm, Absolute Specular Reflectance Measurements at Fixed Angles, Labsphere Application Note No 4, (1998)

    Google Scholar 

  3. S. Wilbrandt, M. Böhme, O. Stenzel, R. Schlegel, N. Kaiser, Spektralfotometrische Messungen bei 60° Einfallswinkel: Absolutmessung des gerichteten Transmissions- und Reflexionsvermögens von Oberflächen und Schichten. Vak. Forsch. Prax. 25(2), 42–47 (2013)

    Article  Google Scholar 

  4. R.M.A. Azzam, A. Alsamman, Quasi index matching for minimum reflectance at a dielectric-conductor interface for obliquely incident p- and s-polarized light. Appl. Opt. 47, 3211–3215 (2008)

    Article  ADS  Google Scholar 

  5. J.A. Woollam, B. Johs, C. Herzinger, J. Hilfiker, R. Synowicki, C. Bungay, Overview of Variable Angle Spectroscopic Ellipsometry (VASE), Part I: Basic Theory and Typical Applications, in SPIE Proceedings CR72, (1999), pp. 3–28

    Google Scholar 

  6. B. Santic, Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation. Thin Solid Films 518, 3619–3624 (2010)

    Article  ADS  Google Scholar 

  7. M. Böhme, Experimenteller Aufbau zur Messung des gerichteten absoluten Transmissions- und Reflexionsvermögens im NIR/VIS/UV-Spektralbereich bei einem Einfallswinkel von 60°, Ernst-Abbe-Fachhochschule Jena, Fachbereich SciTec, Master thesis (2012)

    Google Scholar 

  8. http://www.perkinelmer.com/Content/ApplicationNotes/APP_Spectrophotometeraccessoriesforthinfilmcharacterisation.pdf

  9. Market and Research Report Optical Coatings: Technologies and Global Markets, October 2009, SMC030D, BCC Research, Wellesley, MA USA Web: www.bccresearch.com

  10. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, M. Grössl, The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity. Thin Solid Films 517, 6058–6068 (2009)

    Article  ADS  Google Scholar 

  11. M. Vinnichenko, A. Rogozin, D. Grambole, F. Munnik, A. Kolitsch, W. Möller, O. Stenzel, S. Wilbrandt, A. Chuvilin, U. Kaiser, Highly dense amorphous Nb2O5 films with closed nanosized pores. Appl. Phys. Lett. 95(081904), 1–3 (2009)

    Google Scholar 

  12. H. Ehlers, D. Ristau, Progress in Optical Monitoring, Optical Interference Coatings Technical Digest © OSA 2013, paper WB.1, (2013)

    Google Scholar 

  13. B.T. Sullivan, J.A. Dobrowolski, Deposition error compensation for optical multilayer coatings: I. Theoretical description. Appl. Opt. 31, 3821–3835 (1992)

    Article  ADS  Google Scholar 

  14. B.T. Sullivan, J.A. Dobrowolski, Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system. Appl. Opt. 32, 2351–2360 (1993)

    Article  ADS  Google Scholar 

  15. D. Ristau, H. Ehlers, T. Gross, M. Lappschies, Optical broadband monitoring of conventional and ion processes. Appl. Opt. 45, 1495–1501 (2006)

    Article  ADS  Google Scholar 

  16. S. Wilbrandt, O. Stenzel, N. Kaiser, All-optical in situ analysis of PIAD deposition processes. Proc. SPIE 7101, 71010D-1–71010D-11 (2008)

    Google Scholar 

  17. O. Züger, Dielectric Filter Production with in situ Broadband Optical Monitoring, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest (Optical Society of America, 2010), paper TuC4

    Google Scholar 

  18. S. Wilbrandt, O. Stenzel, N. Kaiser, Verfahren zur Messung der optischen Eigenschaften einer bewegten Probe in einer Beschichtungsanlage (Method for measuring optical characteristics of movable probe in coating installation, involves measuring intensity of transmitted beam by probe at transmission detector), Patent DE 102009012756 B4

    Google Scholar 

  19. J. Gäbler, Entwicklung und Charakterisierung eines Messeinsatzes zur simultanen Erfassung des Transmissions- und Reflexionsvermögens im visuellen Spektralbereich für Hochvakuum-Bedampfungsprozesse, Ernst-Abbe Fachhochschule Jena/Fraunhofer IOF, Bachelor thesis (2013)

    Google Scholar 

  20. S. Wilbrandt, O. Stenzel, N. Kaiser, All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization. Opt. Express 18, 19732–19742 (2010)

    Article  ADS  Google Scholar 

  21. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier, Amsterdam, 1987), p. 269

    Google Scholar 

  22. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, Berlin, 1990)

    Google Scholar 

  23. D.E. Aspnes, J.B. Theeten, F. Hottier, Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys. Rev. B 20, 3292–3302 (1979)

    Article  ADS  Google Scholar 

  24. Optical Coatings for Modern Applications, in Presentations given at the 17th European OptiLayer workshop, Jena, Germany, 11–13 Mar 2013

    Google Scholar 

  25. P. Grosse, FTIR-spectroscopy of layered structures–thin solid films, coated substrates, profiles, multilayers. Proc. SPIE 1575, 169–179 (1991)

    Article  ADS  Google Scholar 

  26. A.V. Tikhonravov, T.V. Amotchkina, M.K. Trubetskov, R.J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, V. Pervak, Optical characterization and reverse engineering based on multiangle spectroscopy. Appl. Opt. 51, 245–254 (2012)

    Article  ADS  Google Scholar 

  27. L. Gao, F. Lemarchand, M. Lequime, Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 20, 15734–15751 (2012)

    Article  Google Scholar 

  28. B. Dischler, A. Bubenzer, P. Koidl, Hard carbon coatings with low optical absorption. Appl. Phys. Lett. 42, 636–638 (1983)

    Article  ADS  Google Scholar 

  29. D. Rademacher, M. Vergöhl, U. Richter, In situ thickness determination of multilayered structures using single wavelength ellipsometry and reverse engineering. Appl. Opt. 50, C222–C227 (2011)

    Article  Google Scholar 

  30. E. Nichelatti, Complex refractive index of a slab from reflectance and transmittance: analytical solution. J. Opt. A: Pure Appl. Opt. 4, 400–403 (2002)

    Article  ADS  Google Scholar 

  31. M. Vogel, O. Stenzel, R. Petrich, G. Schaarschmidt, W. Scharff, The position of the fundamental absorption edge and activation energies for thermally activated electrical conductivity in amorphous carbon layers. Thin Solid Films 227, 74–89 (1993)

    Article  ADS  Google Scholar 

  32. O. Stenzel, S. Wilbrandt, N. Kaiser, Absolutmessungen von gerichteter Transmission und Reflexion an Festkörperproben in der GPOB unter Nutzung von VN-Einsätzen und Anwendung auf die optische Charakterisierung dünner Festkörperschichten, in: Colloqium Optische Spektrometrie, March 21–22 (2011), Berlin, Germany (Materials)

    Google Scholar 

  33. J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976)

    Article  ADS  Google Scholar 

  34. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  35. I. Ohlidal, K. Navrátil, Simple method of spectroscopic reflectometry for the complete optical analysis of weakly absorbing thin films: application to silicon films. Thin Solid Films 156, 181–190 (1988)

    Article  ADS  Google Scholar 

  36. Y.S. Ma, X. Liu, P.-F. Gu, J.-F. Tang, Estimation of optical constants of thin film by the use of artificial neural networks. Appl. Opt. 35, 5035–5039 (1996)

    Article  ADS  Google Scholar 

  37. S. Wi1brandt, R. Petrich, O. Stenzel, Optical interference coating characterisation using neural networks. Proc. SPIE 3738, 517–528 (1999)

    Google Scholar 

  38. M.F. Tabet, W.A. McGahan, Use of artificial neural networks to predict thickness and optical constants of thin films from reflectance data. Thin Solid Films 370, 122–127 (2000)

    Article  ADS  Google Scholar 

  39. J.P. Borgogno, B. Lazarides, E. Pelletier, Automatic determination of the optical constants of inhomogeneous thin films. Appl. Opt. 21, 4020–4028 (1982)

    Article  ADS  Google Scholar 

  40. A.V. Tikhonravov, M.K. Trubetskov, B.T. Sullivan, J.A. Dobrowolski, Influence of small inhomogeneities on the spectral characteristics of single thin films. Appl. Opt. 36, 7188–7198 (1997)

    Article  ADS  Google Scholar 

  41. S. Wilbrandt, in preparation

    Google Scholar 

  42. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767–3777 (1973)

    Article  ADS  Google Scholar 

  43. D.R. Penn, Wave-number dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    Article  ADS  MATH  Google Scholar 

  44. http://www.optilayer.com/

  45. O. Stenzel, S. Wilbrandt, K. Friedrich, N. Kaiser, Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells. Vak. Forsch. Prax. 21(5), 15–23 (2009)

    Article  Google Scholar 

  46. B. Harbecke, B. Heinz, P. Grosse, Optical properties of thin films and the Berreman effect. Appl. Phys. A 38, 263–267 (1985)

    Article  ADS  Google Scholar 

  47. H. Ehrenreich, H.R. Philipp, B. Segall, Optical properties of aluminum. Phys. Rev. 132, 1918–1928 (1963)

    Article  ADS  Google Scholar 

  48. K. Hehl, J. Bischoff, UNIGIT grating solver software, 2001 for details see http://www.unigit.com/

  49. J.H. Dobrowolski, F.C. Ho, A. Waldorf, Determination of optical constants of thin film coating materials based on in verse synthesis. Appl. Opt. 22, 3191–3200 (1983)

    Article  ADS  Google Scholar 

  50. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1968)

    Google Scholar 

  51. D.P. Arndt, R.M.A. Azzam, J.M. Bennett, J.P. Borgogno, C.K. Carniglia, W.E. Case, J.A. Dobrowolski, U.J. Gibson, T. Tuttle Hart, F.C Ho, V.A. Hodgkin, W.P. Klapp, H. Angus Macleod, E. Pelletier, M.K. Purvis, D.M. Quinn, D.H. Strome, R. Swenson, P.A. Temple, T.F. Thonn, Multiple determination of the optical constants of thin-film coating materials; Appl. Opt. 23, 3571–3596 (1984)

    Google Scholar 

  52. C.L. Nagendra, G.K.M. Thutupalli, Optical constants of absorbing films. Vacuum 31, 141–145 (1980)

    Article  Google Scholar 

  53. M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M.C. Gather, J.H.-W.M. Kremer, K. Meerholz, Dispersion-model-free determination of optical constants: application to materials for organic thin film devices. Appl. Opt. 48, 1507–1513 (2009)

    Article  ADS  Google Scholar 

  54. E. Elizalde, J.M. Frigerio, J. Rivory, Determination of thickness and optical constants of thin films from photometric and ellipsometric measurement. Appl. Opt. 25, 4557–4561 (1986)

    Google Scholar 

  55. O. Stenzel, R. Petrich, W. Scharff, V. Hopfe, A.V. Tikhonravov, A hybrid method for determination of optical thin film constants. Thin Solid Films 207, 324–329 (1992)

    Article  ADS  Google Scholar 

  56. R. Petrich, Contributions to spectrophotometric characterisation of thin films showing considerable optical losses. Technische Universität Chemnitz-Zwickau, Fakultät für Naturwissenschaften, Thesis (1996)

    Google Scholar 

  57. T.V. Amotchkina, V. Janicki, J. Sancho-Parramon, A.V. Tikhonravov, M.K. Trubetskov, H. Zorc, General approach to reliable characterization of thin metal films. Appl. Opt. 50, 1453–1464 (2011)

    Article  ADS  Google Scholar 

  58. W.M. Duncan, S.A. Henck, J.W. Kühne, L.M. Löwenstein, S. Maung, High-speed spectral ellipsometry for in situ diagnostic and process control. J. Vac. Sci. Technol. B 12, 2779–2784 (1994)

    Article  Google Scholar 

  59. M. Kildemo, P. Bulkin, S. Deniau, B. Drévillon, Real time control of plasma deposited multilayers by multiwavelength ellipsometry. Appl. Phys. Lett. 68, 3395–3397 (1996)

    Article  ADS  Google Scholar 

  60. C. Buzea, K. Robbie, State of the art in thin film thickness and deposition rate monitoring sensors. Rep. Prog. Phys. 68, 385–409 (2005)

    Article  ADS  Google Scholar 

  61. A.V. Tikhonravov, M.K. Trubetskov, On-line characterization and reoptimization of optical coatings. Proc. SPIE 5250, 406–413 (2004)

    Article  ADS  Google Scholar 

  62. T.V. Amotchkina, M.K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, A.V. Tikhonravov, Comparison of algorithms used for optical characterization of multilayer optical coatings. Appl. Opt. 50, 3389–3395 (2011)

    Article  ADS  Google Scholar 

  63. S. Wilbrandt, O. Stenzel, N. Kaiser, Experimental determination of the refractive index profile of rugate filters based on in situ measurements of transmission spectra. J. Phys. D 40, 1435–1441 (2007)

    Article  ADS  Google Scholar 

  64. S. Wilbrandt, O. Stenzel, M. Bischoff, N. Kaiser, Combined in situ and ex situ optical data analysis of magnesium fluoride coatings deposited by plasma ion assisted deposition. Appl. Opt. 50, C5–C10 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Stenzel .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stenzel, O. (2014). Experimental Determination of Thin Film Optical Constants. In: Optical Coatings. Springer Series in Surface Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54063-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54063-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54062-2

  • Online ISBN: 978-3-642-54063-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics