Skip to main content

Novel Bioreactors for Culturing Marine Organisms

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 8903 Accesses

Abstract

This chapter considers a wide range of novel bioreactor configurations for cultivation of marine organisms for purposes of biomass harvesting/enrichment or synthesis of target metabolites or wastewater treatment. It begins by analyzing biofilm reactors that promote surface-attached growth, including the niche-mimicking types viz. modified roller bottles, air membrane surface bioreactor, and ultralow speed rotating disk bioreactor as well as the small-scale extended surface shaken vessel. Photobioreactors (GlossaryTerm

PBR

), used mainly for phototrophic algal growth, are discussed next – these include the tubular, plate/panel and stirred tank types on the one hand and vertical column GlossaryTerm

PBR

s on the other, the latter mainly comprising airlift (GlossaryTerm

AL

) and bubble column (GlossaryTerm

BC

) GlossaryTerm

PBR

s. Important GlossaryTerm

AL

/GlossaryTerm

BC

configurations have been described. Membrane bioreactors (GlossaryTerm

MBR

) are then taken up, which include, e. g., the anaerobic GlossaryTerm

MBR

, ion-exchange GlossaryTerm

MBR

, etc. Immobilized cell bioreactors – primarily packed bed bioreactors (GlossaryTerm

PBBR

) and their hybrids (e. g., with GlossaryTerm

PBR

, airlift bioreactor (GlossaryTerm

ALBR

), GlossaryTerm

MBR

etc.), are reviewed next, followed by hollow fiber bioreactors (GlossaryTerm

HFBR

) (e. g., GlossaryTerm

HF

–submerged GlossaryTerm

MBR

, GlossaryTerm

HF

-GlossaryTerm

PBR

, etc.) which, technically, are also a class of immobilized-cell bioreactors. This is followed by a brief overview of fluidized bed and moving bed bioreactors, used primarily for wastewater treatment. Finally, the different classes of high-pressure and/or high-temperature bioreactors are considered, which are practically wholly devoted to cultivation of extremophiles (barophiles and/or thermophiles) isolated from the deep sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALBR:

airlift bioreactor

AL:

airlift

AMIS:

anaerobic methane incubation system

AMS:

air membrane surface

ANME:

anaerobic methanotrophic archaea

AOB:

ammonia oxidizing bioreactor

AOM:

anaerobic oxidation of methane

ATN:

autotrophic nitrifier

ATP:

adenosine triphosphate

AT:

acyltransferase

AnMBR:

anaerobic membrane bioreactor

BCBR:

bubble column bioreactor

BC:

bubble column

BDL:

beyond detectable limit

BD:

biofilm density

BFR:

biofilm reactor

BNR:

biological nitrate removal

BPR:

back pressure regulator

BPS:

back-pressure-system

CCCP:

carbonylcyanide m-chlorophenylhydrazone

CCF:

conico-cylindrical flask

CPBR:

column-type PBR

CT:

collection tank

CV:

check valve

DB:

digestion basin

DN-BPR:

denitrifying biological phosphorus removal

DO:

dissolved oxygen

EBPR:

enhanced biological phosphorus removal

EF:

Erlenmeyer flask

EPS:

exopolysaccharide

ESSV:

extended surface shaken vessel

FAP-PBR:

flat alveolar panel PBR

FAP:

flat alveolar panel

FBBR:

fluidized bed bioreactor

FCB:

free-cell photobioreactor

FISH:

fluorescence in situ hybridization

FO:

fiber optic probe

GAO:

glycogen accumulating organism

GB:

glove box

GWP-PBR:

green wall panel PBR

GWP:

green wall panel

HF-MBR:

hollow-fiber membrane bioreactor

HF-MFBR:

hollow-fiber microfiltration bioreactor

HF-sMBR:

hollow-fiber submerged MBR

HFAR:

hybrid flow-through anaerobic reactor

HFBR:

hollow-fiber bioreactor

HF:

hollow fiber

HJ:

hydrogen supply

HP-CI:

high-pressure continuous incubation system

HP-MI:

high-pressure manifold incubation system

HPBBR:

high-pressure batch bioreactor

HPBR:

high-pressure bioreactor

HPHTBR:

high-pressure/high-temperature bioreactor

HPHT:

high-pressure/high-temperature

HPLC:

high-performance liquid chromatography

HPTGS:

high-pressure thermal gradient system

HPU:

high-pressure unit

HRT:

hydraulic retention time

HTHPBR:

high-temperature, high-pressure bioreactor

He:

helium

IEMBR:

ion exchange membrane bioreactor

IV1:

injection vessel

IV2:

injection vessel

L/D:

light/dark

LDPE:

low-density polyethylene

LFB:

limited filamentous bulking

LRT:

larval rearing tank

LS:

light source

M-PBR:

membrane photobioreactor

MBBR:

moving bed bioreactor

MBR:

membrane bioreactor

MF:

microfiltration

MPBR:

membrane photobioreactor

MRBC:

Modified roller bottle cultivation

MS:

mass spectrometry

MT:

shrimp maturation tank

NBC:

nitrifying bacterial consortia

NOB:

nitrite-oxidizing bioreactor

NO:

nitric oxide

OHT:

overhead tank

PAAR:

peak activity attainment rate

PAA:

peak antibiotic activity

PAMA:

peak antimicrobial activity

PAN:

plane polyacrylonitrile

PAO:

phosphorus accumulating organism

PB-PBR:

packed bed photobioreactor

PBBR:

packed bed bioreactor

PBEL-ALBR:

packed bed external loop airlift bioreactor

PBR:

photobioreactor

PEEK:

poly-ether-ether-ketone

PG:

pressure gauge

PHA:

poly-β-hydoxyalkanoate

PMMA:

poly(methyl methacrylate)

PMT:

photomultiplier tube

PNV:

pneumatic valve

POM:

poly-oxy-methylene

PP:

piston pump

PS:

polysaccharide

PTFE:

polytetrafluoroethylene

PT:

pressure transducer

PU:

polyurethane

PVA:

polyvinyl alcohol

PVC:

polyvinylchloride

PV:

polyvinyl

RAS:

recirculating aquaculture system

RBC:

rotary biological contactor

RDBR:

rotating disk bioreactor

RO:

reverse osmosis

RP:

magnetically driven vapor recirculation pump

SLM:

St. Lawrence Mesocosm

SRB:

sulfate-reducing bacteria

SRT:

solids retention time

SR:

sulfate reduction

ST-PBR:

stirred-tank photobioreactor

STS:

secondarily treated sewage

TAN:

total ammoniacal nitrogen

TGB:

thermal gradient block

TMP:

transmembrane pressure

TR-PBR:

tubular recycle photobioreactor

ULS-RDBR:

ultralow speed rotating disk bioreactor

UV:

ultraviolet

anammox:

anaerobic ammonium-oxidizing

g.b.f.:

glass-ball filter

sMBR:

submerged-membrane bioreactor

References

  1. L. Yan, K.G. Boyd, J.G. Burgess: Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation, Mar. Biotechnol. 4, 356–366 (2002)

    Article  CAS  Google Scholar 

  2. L. Yan, K.G. Boyd, D.R. Adams, J.G. Burgess: Biofilm-specific cross-species induction of antimicrobial compounds in bacilli, Appl. Environ. Microbiol. 69, 3719–3727 (2003)

    Article  CAS  Google Scholar 

  3. S. Sarkar, M. Saha, D. Roy, P. Jaisankar, S. Das, L.G. Roy, R. Gachhui, T. Sen, J. Mukherjee: Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the sundarbans in a niche-mimic bioreactor, Mar. Biotechnol. 10, 518–526 (2008)

    Article  CAS  Google Scholar 

  4. S. Sarkar, J. Mukherjee, D. Roy: Antibiotic production by a marine isolate (MS 310) in an ultra-low-speed rotating disk bioreactor, Biotechnol. Bioprocess Eng. 14, 775–780 (2009)

    Article  CAS  Google Scholar 

  5. S. Sarkar, D. Roy, J. Mukherjee: Production of a potentially novel antimicrobial compound by a biofilm-forming marine Streptomyces sp. in a niche-mimic rotating disk bioreactor, Bioprocess Biosyst. Eng. 33, 207–217 (2010)

    Article  CAS  Google Scholar 

  6. S. Sarkar, D. Roy, J. Mukherjee: Enhanced protease production in a polymethylmethacrylate conico-cylindricalflask by two biofilm-forming bacteria, Bioresour. Technol. 102, 1849–1855 (2011)

    Article  CAS  Google Scholar 

  7. S. Mitra, S. Sarkar, R. Gachhui, J. Mukherjee: A novel conico-cylindrical flask aids easy identification of critical process parameters for cultivation of marine bacteria, Appl. Microbiol. Biotechnol. 90, 321–330 (2011)

    Article  CAS  Google Scholar 

  8. S. Mitra, P. Banerjee, R. Gachhui, J. Mukherjee: Cellulase and xylanase activity in relation to biofilm formation by two intertidal filamentous fungi in a novel polymethylmethacrylate conico-cylindrical flask, Bioprocess Biosyst. Eng. 34, 1087–1101 (2011)

    Article  CAS  Google Scholar 

  9. Q. Hu, N. Kurano, M. Kawachi, I. Iwasaki, S. Miyachi: Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor, Appl. Microbiol. Biotechnol. 49, 655–662 (1998)

    Article  CAS  Google Scholar 

  10. T. Matsunaga, T. Hatano, A. Yamada, M. Matsumoto: Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor, Biotechnol. Bioeng. 68, 647–651 (2000)

    Article  CAS  Google Scholar 

  11. L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, M.R. Tredici: Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng. 102, 100–112 (2009)

    Article  CAS  Google Scholar 

  12. J.C. Merchuk, M. Ronen, S. Giris, S.M. Arad: Light/Dark cycles in the growth of the red microalga Porphyridium sp., Biotechnol. Bioeng. 59, 705–713 (1998)

    Article  CAS  Google Scholar 

  13. G.L. Rorrer, R.K. Mullikin: Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures, Chem. Eng. Sci. 54, 3153–3162 (1999)

    Article  CAS  Google Scholar 

  14. G.L. Rorrer, C. Zhi: Development and bioreactor cultivation of a novel semidifferentiated tissue suspension derived from the marine plant Acrosiphonia coalita, Biotechnol. Bioeng. 49, 559–567 (1996)

    Article  CAS  Google Scholar 

  15. J.C. Ogbonna, S. Tomiyama, H. Tanaka: Production of α-tocopherol by sequential heterotrophic–photoautotrophic cultivation of Euglena gracilis, J. Biotechnol. 70, 213–221 (1999)

    Article  CAS  Google Scholar 

  16. M.G. de Morais, J.A.V. Costa: Biofixation of carbon dioxide by spirulina sp. and scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, J. Biotechnol. 129, 439–445 (2007)

    Article  Google Scholar 

  17. S.R. Chae, E.J. Hwang, H.S. Shin: Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor, Bioresour. Technol. 97, 322–329 (2006)

    Article  CAS  Google Scholar 

  18. C. Zamalloa, N. Boon, W. Verstraete: Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions, Appl. Energy 92, 733–738 (2012)

    Article  CAS  Google Scholar 

  19. C.U. Ugwu, H. Aoyagi, H. Uchiyama: Photobioreactors for mass cultivation of algae, Bioresour. Technol. 99, 4012–4028 (2008)

    Article  Google Scholar 

  20. L. Xu, P.J. Weathers, X.-R. Xiong, C.-Z. Liu: Microalgal bioreactors: Challenges and opportunities, Eng. Life Sci. 9, 178–189 (2009)

    Article  CAS  Google Scholar 

  21. J.C. Merchuk, M. Gluz: Airlift Reactors. In: Encyclopedia of Bioprocess Technology, ed. by M.C. Flickinger, S.W. Drew (Wiley, New York 1999) pp. 320–353

    Google Scholar 

  22. M. Jiang, Y. Zhang, X. Zhou, Y. Su, M. Zhang, K. Zhang: Simultaneous carbon and nutrient removal in an airlift loop reactor under a limited filamentous bulking state, Bioresour. Technol. 130, 406–411 (2013)

    Article  CAS  Google Scholar 

  23. H.S. Jeong, D.J. Lim, S.H. Hwang, S.D. Ha, J.Y. Kong: Rhamnolipid production by Pseudomonas aeruginosa immobilised in polyvinyl alcohol beads, Biotechnol. Lett. 26, 35–39 (2004)

    Article  CAS  Google Scholar 

  24. M.M. Assadi, M.R. Jahangiri: Textile wastewater treatment by Aspergillus niger, Desalination 141, 1–6 (2001)

    Article  CAS  Google Scholar 

  25. J. Munoz, A.C. Cahue-Lopez, R. Patino, D. Robledo: Use of plant growth regulators in micropropagation of Kappaphycus alvarezii (Doty) in airlift bioreactors, J. Appl. Phycol. 18, 209–218 (2006)

    Article  CAS  Google Scholar 

  26. J.P. Polzin, G.L. Rorrer: Halogenated monoterpene production by microplantlets of the marine red alga ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion, Biotechnol. Bioeng. 82, 416–428 (2003)

    Article  Google Scholar 

  27. A. Contreras, F. García, E. Molina, J.C. Merchuk: Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor, Biotechnol. Bioeng. 60, 317–325 (1998)

    Article  CAS  Google Scholar 

  28. G. Vunjak-Novakovic, Y. Kim, X. Wu, I. Berzin, J.C. Merchuk: Air-Lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies, Eng. Chem. Res. 44, 6154–6163 (2005)

    Article  CAS  Google Scholar 

  29. J.A. Del Campo, H. Rodriguez, J. Moreno, M.A. Vargas, J. Rivas, M.G. Guerrero: Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor, J. Biotechnol. 85, 289–295 (2001)

    Article  Google Scholar 

  30. Z. Guo, Z. Chen, W. Zhang, X. Yu, M. Jin: Improved hydrogen photoproduction regulatedby carbonylcyanide m-chlorophenylhrazone from marine green alga Platymonas subcordiformis grown in CO${}_{{2}}$-supplemented air bubble column bioreactor, Biotechnol. Lett. 30, 877–883 (2008)

    Article  CAS  Google Scholar 

  31. Y.M. Huang, G.L. Rorrer: Optimal temperature and photoperiod for the cultivation of Agardhiella subulata microplantlets in a bubble-column photobioreactor, Biotechnol. Bioeng. 79, 139–144 (2002)

    Article  Google Scholar 

  32. C. Zhi, G.L. Rorrer: Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a bubble-column bioreactor, Enzyme Microb. Technol. 18, 291–299 (1996)

    Article  CAS  Google Scholar 

  33. H. Nagase, K. Eguchi, K.I. Yoshihara, K. Hirata, K. Miyamoto: Improvement of microalgal NOx removal in bubble column and airlift reactors, J. Ferment. Bioeng. 86, 421–423 (1998)

    Article  CAS  Google Scholar 

  34. S. Monkonsit, S. Powtongsook, P. Pavasant: Comparison between airlift photobioreactor and bubble column for Skeletonema costatum cultivation, Eng. J. 15, 53–64 (2011)

    Article  Google Scholar 

  35. S. Krichnavaruk, W. Loataweesup, S. Powtongsook, P. Pavasant: Optimal growth conditions and the cultivation of Chaetoceros calcitrans in airlift photobioreactor, Chem. Eng. J. 105, 91–98 (2005)

    Article  CAS  Google Scholar 

  36. A. Sanchez-Miron, F.G. Camacho, A.C. Gomez, E.M. Grima, Y. Chisti: Bubble-column and airlift photobioreactors for algal culture, AlChE J. 46, 1872–1887 (2000)

    Article  Google Scholar 

  37. J.C. Merchuk, M. Gluz, I. Mukmenev: Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp., J. Chem. Technol. Biotechnol. 75, 1119–1126 (2000)

    Article  CAS  Google Scholar 

  38. G.L. Rorrer, D.P. Cheney: Bioprocess. Eng, of cell and tissue cultures for marine seaweeds, Aquacult. Eng. 32, 11–41 (2004)

    Google Scholar 

  39. C. Zamalloa, J.D. Vrieze, N. Boon, W. Verstraete: Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor, Appl. Microbiol. Biotechnol. 93, 859–869 (2012)

    Article  CAS  Google Scholar 

  40. S.E. Oh, P. Iyer, M.A. Bruns, B.E. Logan: Biological hydrogen production using a membrane bioreactor, Biotechnol. Bioeng. 87, 119–127 (2004)

    Article  CAS  Google Scholar 

  41. C.T. Matos, A.M. Sequeira, S. Velizarov, J.G. Crespo, M.A.M. Reis: Nitrate removal in a closed marine system through the ion exchange membrane bioreactor, J. Hazard. Mater. 166, 428–434 (2009)

    Article  CAS  Google Scholar 

  42. R.J.W. Meulepas, C.G. Jagersma, J. Gieteling, C.J.N. Buisman, A.J.M. Stams, P.N.L. Lens: Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors, Biotechnol. Bioeng. 104, 458–470 (2009)

    Article  CAS  Google Scholar 

  43. R. Bagai, D. Madamwar: Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of Phormidium valderianum, Halobacterium halobium, and Escherichia coli immobilized in polyvinyl alcohol, Int. J. Hydrog. Energy 24, 311–317 (1999)

    Article  CAS  Google Scholar 

  44. S. Patel, D. Madamwar: Continuous hydrogen evolution by an immobilized combined system of Phormidium valderianum, Halobacterium halobium, and Escherichia coli in a packed bed reactor, Int. J. Hydrog. Energy 20, 631–634 (1995)

    Article  CAS  Google Scholar 

  45. S.R. Kumar, M. Chandrasekaran: Continuous production of l-glutaminase by an immobilized marine Pseudomonas sp. BTMS-51 in a packed bed reactor, Process Biochem. 38, 1431–1436 (2003)

    Article  CAS  Google Scholar 

  46. A. Sabu, S.R. Kumar, M. Chandrasekaran: Continuous production of extracellular l-glutaminase by Ca-alginate-immobilized marine Beauveria bassiana BTMF S-10 in packed-bed reactor, Appl. Biochem. Biotechnol. 102/103, 71–79 (2002)

    Article  Google Scholar 

  47. V.J.R. Kumar, V. Joseph, R. Vijai, R. Philip, I.S.B. Singh: Nitrification in a packed bed bioreactor integrated into a marine recirculating maturation system under different substrate concentrations and flow rates, J. Chem. Technol. Biotechnol. 86, 790–797 (2011)

    Article  CAS  Google Scholar 

  48. V.J.R. Kumar, C. Achuthan, N.J. Manju, R. Philip, I.S.B. Singh: Activated packed bed bioreactor for rapid nitrification in brackish water hatchery systems, J. Ind. Microbiol. Biotechnol. 36, 355–365 (2009)

    Article  Google Scholar 

  49. S. Silapakul, S. Powtongsook, P. Pavasant: Nitrogen compounds removal in a packed bed external loop airlift bioreactor, Korean J. Chem. Eng. 22, 393–398 (2005)

    Article  CAS  Google Scholar 

  50. J.-K. Seo, I.-H. Jung, M.-R. Kim, B.J. Kim, S.-W. Nam, S.-K. Kim: Nitrification performance of nitrifiers immobilized in PVA (polyvinyl alcohol) for a marine recirculating aquarium system, Aquacult. Eng. 24, 181–194 (2001)

    Article  Google Scholar 

  51. C. Garbisu, J.M. Gil, M.J. Bazin, D.O. Hall, J.L. Serra: Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors, J. Appl. Phycol. 3, 221–234 (1991)

    Article  CAS  Google Scholar 

  52. I. Urrutia, J.L. Serra, M.J. Llama: Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams, Enzyme Microb. Technol. 17, 200–205 (1995)

    Article  CAS  Google Scholar 

  53. T. Lebeau, P. Gaudin, G.A. Junter, L. Mignot, J.M. Robert: Continuous marennin production by agar-entrapped Haslea ostrearia using a tubular photobioreactor with internal illumination, Appl. Microbiol. Biotechnol. 54, 634–640 (2000)

    Article  CAS  Google Scholar 

  54. N. Rossignol, T. Lebeau, P. Jaouen, J.M. Robert: Comparison of two membrane-photobioreactors, with free of immobilized cell, for the production of oigments by a marine diatom, Bioprocess Eng. 23, 495–501 (2000)

    Article  CAS  Google Scholar 

  55. J.R. Lloyd, T.R. Hirst, A.W. Bunch: Hollow-fibre bioreactors compared to batch and chemostat culture for the production of a recombinant toxoid by a marine vibrio, Appl. Microbiol. Biotechnol. 48, 155–161 (1997)

    Article  CAS  Google Scholar 

  56. G. Rombaut, R. Grommen, Q. Zizhong, V. Vanhoof, G. Suantika, P. Dhert, P. Sorgeloos, W. Verstraete: Improved performance of an intensive rotifer culture system by using a nitrifying inoculum (ABIL), Aquacult. Res. 34, 165–174 (2003)

    Article  Google Scholar 

  57. S. Soltani, D. Mowla, M. Vossoughi, M. Hesampour: Experimental investigation of oily water treatment by membrane bioreactor, Desalination 250, 598–600 (2010)

    Article  CAS  Google Scholar 

  58. C. Schiraldi, F. Marulli, I. Di Lernia, A. Martino, M. De Rosa: A microfiltration bioreactor to achieve high cell density in Sulfolobus solfataricus fermentation, Extremophiles 3, 199–204 (1999)

    Article  CAS  Google Scholar 

  59. S. Sawayama, K.K. Rao, D.O. Hall: Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor, Appl. Microbiol. Biotechnol. 49, 463–468 (1998)

    Article  CAS  Google Scholar 

  60. B.H. Chung, H.N. Chang, I.H. Kim: Rifamycin B production by Nocardia mediterranei in a dual hollow-fiber bioreactor, Enzyme Microb. Technol. 9, 345–349 (1987)

    Article  CAS  Google Scholar 

  61. E. Cytryn, I. Gelfand, Y. Barak, J. van Rijn, D. Minz: Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system, Environ. Microbiol. 5, 55–63 (2003)

    Article  CAS  Google Scholar 

  62. E. Cytryn, D. Minz, A. Gieseke, J. van Rijn: Transient developmentof filamentous Thiothrix species in a marine sulfide oxidizing, denitrifying fluidized bed reactor, FEMS Microbiol. Lett. 256, 22–29 (2006)

    Article  CAS  Google Scholar 

  63. Schramm, D. de Beer, M. Wagner, R. Amann: Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor, Appl. Environ. Microbiol. 64, 3480–3485 (1998)

    CAS  Google Scholar 

  64. D. de Beer, J.C. van den Heuvel, S.P.P. Ottengraf: Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates, Appl. Environ. Microbiol. 59, 573–579 (1993)

    Google Scholar 

  65. C. Garbisu, D.O. Hall, J.L. Serra: Removal of phosphate by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors, J. Chem. Technol. Biotechnol. 57, 181–189 (1993)

    Article  CAS  Google Scholar 

  66. M.A. Labelle, P. Juteau, M. Jolicoeur, R. Villemur, S. Parent, Y. Comeau: Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor, Water Res. 39, 3409–3417 (2005)

    Article  CAS  Google Scholar 

  67. M. Dupla, Y. Comeau, S. Parent, R. Villemur, M. Jolicoeur: Design optimization of a self-cleaning moving-bed bioreactor for seawater denitrification, Water Res. 40, 249–258 (2006)

    Article  CAS  Google Scholar 

  68. Y. Tal, J.E.M. Watts, H.J. Schreier: Anaerobic ammonium-oxidizing (Anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system, Appl. Environ. Microbiol. 72, 2896–2904 (2006)

    Article  CAS  Google Scholar 

  69. B. Vallet, M.A. Labelle, L. Rieger, S. Bigras, S. Parent, P. Juteau, R. Villemur, Y. Comeau: Inhibition of biological phosphorus removal in a sequencing moving bed biofilm reactor in seawater, Water Sci. Technol. 59, 1101–1110 (2009)

    Article  CAS  Google Scholar 

  70. F. Canganella, J.M. Gonzalez, M. Yanagibayashi, C. Kato, K. Horikoshi: Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon thermococcus peptonophilus, Arch. Microbiol. 168, 1–7 (1997)

    Article  CAS  Google Scholar 

  71. J. Kallmeyer, T.G. Ferdelman, K.-H. Jansen, B.B. Jorgensen: A high-pressure thermal gradiant block for investigating microbial activity in multiple deep-sea samples, J. Microbiol. Methods 55, 165–172 (2003)

    Article  CAS  Google Scholar 

  72. R.J. Parkes, G. Sellek, G. Webster, D. Martin, E. Anders, A.J. Weightman, H. Sass: Culturable prokaryotic diversity of deep, gas hydrate sediments: First use of a continuous high-pressure anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG), Environ. Microbiol. 11, 3140–3153 (2009)

    Article  CAS  Google Scholar 

  73. J.F. Miller, E.L. Almond, N.N. Shah, J.M. Ludlow, J.A. Zollweg, W.B. Streett, S.H. Zinder, D.S. Clark: High-pressure-temperature bioreactor for studying pressure-temperature relationships in bacterial growth and productivity, Biotechnol. Bioeng. 31, 407–413 (1988)

    Article  CAS  Google Scholar 

  74. J.F. Miller, N.N. Shah, C.M. Nelson, J.M. Ludlow, D.S. Clark: Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii, Appl. Environ. Microbiol. 54, 3039–3042 (1988)

    CAS  Google Scholar 

  75. J.F. Miller, C.M. Nelson, J.M. Ludlow, N.N. Shah, D.S. Clark: High pressure-temperature bioreactor: Assays of thermostable hydrogenase with fiber optics, Biotechnol. Bioeng. 34, 1015–1021 (1989)

    Article  CAS  Google Scholar 

  76. C.M. Nelson, M.R. Schuppenhauer, D.S. Clark: Effects of hyperbaric pressure on a deep-sea archaebacterium in stainless steel and glass-lined vessels, Appl. Environ. Microbiol. 57, 3576–3580 (1991)

    CAS  Google Scholar 

  77. C.M. Nelson, M.R. Schuppenhauer, D.S. Clark: High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth, Appl. Environ. Microbiol. 58, 1789–1793 (1992)

    CAS  Google Scholar 

  78. D.J. Hei, D.S. Clark: Pressure stabilization of proteins from extreme thermophiles, Appl. Environ. Microbiol. 60, 932–939 (1994)

    CAS  Google Scholar 

  79. C.B. Park, D.S. Clark: Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii, Appl. Environ. Microbiol. 68, 1458–1463 (2002)

    Article  CAS  Google Scholar 

  80. P.R. Girguis, V.J. Orphan, S.J. Hallam, E.F. DeLong: Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor, Appl. Environ. Microbiol. 69, 5472–5482 (2003)

    Article  CAS  Google Scholar 

  81. J.L. Houghton, W.E. Seyfried Jr., A.B. Banta, A.-L. Rysenbach: Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures, Extremophiles 11, 371–382 (2007)

    Article  CAS  Google Scholar 

  82. C. Deusner, V. Meyer, T.G. Ferdelman: High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane, Biotechnol. Bioeng. 105, 524–533 (2009)

    Article  Google Scholar 

  83. Y. Zhang, J.P. Henriet, J. Bursens, N. Boon: Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor, Bioresour. Technol. 101, 3132–3138 (2010)

    Article  CAS  Google Scholar 

  84. V.T. Marteinsson, P. Moulin, J.L. Birrien, A. Gambacorta, M. Vernet, D. Prieur: Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus Abyssi, Appl. Environ. Microbiol. 63, 1230–1236 (1997)

    CAS  Google Scholar 

  85. V.T. Marteinsson, J.L. Birrien, A.L. Reysenbach, M. Vernet, D. Marie, A. Gambacorta, P. Messner, U.B. Sleytr, D. Prieur: Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent, Int. J. Syst. Bacteriol. 49, 351–359 (1999)

    Article  Google Scholar 

  86. P.C. Wright, C. Stevenson, E. McEvoy, J.G. Burgess: Opportunities for marine bioprocess intensification using novel bioreactor design: Frequency of barotolerance in microorganisms obtained from surface waters, J. Biotechnol. 70, 343–349 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roy, D. (2015). Novel Bioreactors for Culturing Marine Organisms. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_12

Download citation

Publish with us

Policies and ethics