Skip to main content

Auditive Informationsverarbeitung

  • Chapter
  • First Online:
Allgemeine Psychologie

Zusammenfassung

Dieses Kapitel beschäftigt sich mit Wahrnehmung und Informationsverarbeitung in der auditiven Sinnesmodalität. Ausgehend von den physikalischen und physiologischen Grundlagen der Aufnahme und Weiterleitung akustischer Informationen beim Menschen werden psychische Funktionen betrachtet, die für das Hören von zentraler Bedeutung sind: Gedächtnis und Prädiktion, Aufmerksamkeit, Objektbildung sowie der Umgang mit Mehrdeutigkeit. Abschließend werden verschiedene Hörstörungen sowie Anwendungsbeispiele der wahrnehmungspsychologischen Grundlagen erörtert.

Schlüsselwörter: Aufmerksamkeit; Prädiktion; Gedächtnis; Ambiguität; Multistabilität; Auditive Szenenanalyse; Überlagerung; Binaurales Hören; Hörbahn; Audiometrie; Tinnitus; Versteckter Hörverlust

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ahveninen, J., Hämäläinen, M., Jääskeläinen, I. P., Ahlfors, S. P., Huang, S., Lin, F. H., Raij, T., Sams, M., Vasios, C. E., & Belliveau, J. W. (2011). Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of the National Academy of Sciences of the United States of America, 108, 4182–4187.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alain, C., & McDonald, K. L. (2007). Age-related differences in neuromagnetic brain activity underlying concurrent sound perception. Journal of Neuroscience, 27, 1308–1314.

    Article  PubMed  Google Scholar 

  • Alain, C., & Winkler, I. (2012). Recording event-related potentials: Application to study auditory perception. In D. Poeppel, T. Overath, A. N. Popper, & R. R. Fay (Hrsg.), The Human Auditory Cortex Handbook of Auditory Research. (S. 69–96). New York: Springer.

    Chapter  Google Scholar 

  • Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from brain potentials. Journal of Experimental Psychology, 27, 1072–1089.

    PubMed  Google Scholar 

  • Alho, K., Sainio, K., Sajaniemi, N., Reinikainen, K., & Näätänen, R. (1990). Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroencephalography and Clinical Neurophysiology, 77, 151–155.

    Article  PubMed  Google Scholar 

  • Arnal, L. H., Morillon, B., Kell, C. A., & Giraud, A.-L. (2009). Dual neural routing of visual facilitation in speech processing. Journal of Neuroscience, 29, 13445–13453.

    Article  PubMed  Google Scholar 

  • Baess, P., Widmann, A., Roye, A., Schröger, E., & Jacobsen, T. (2009). Attenuated human auditory middle latency response and evoked 40-Hz response to self-initiated sounds. European Journal of Neuroscience, 29, 1514–1521.

    Article  PubMed  Google Scholar 

  • Baldeweg, T. (2006). Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends in Cognitive Sciences, 10, 93–94.

    Article  PubMed  Google Scholar 

  • Bendixen, A. (2014). Predictability effects in auditory scene analysis: A review. Frontiers in Neuroscience, 8, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Best, V., Ozmeral, E. J., Kopčo, N., & Shinn-Cunningham, B. G. (2008). Object continuity enhances selective auditory attention. Proceedings of the National Academy of Sciences of the United States of America, 105, 13174–13178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C., & Shinn-Cunningham, B. G. (2014). Cochlear neuropathy and the coding of supra-threshold sound. Frontiers in Systems Neuroscience, 8, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidet-Caulet, A., Mikyska, C., & Knight, R. T. (2010). Load effects in auditory selective attention: evidence for distinct facilitation and inhibition mechanisms. Neuroimage, 50, 277–284.

    Article  PubMed  Google Scholar 

  • Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14, 693–707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bőhm, T. M., Shestopalova, L., Bendixen, A., Andreou, A. G., Georgiou, J., Garreau, G., Pouliquen, P., Cassidy, A., Denham, S. L., & Winkler, I. (2013). The role of perceived source location in auditory stream segregation: Separation affects sound organization, common fate does not. Learning and Perception, 5, 55–72.

    Article  Google Scholar 

  • Brandenburg, K., Faller, C., Herre, J., Johnston, J. D., & Kleijn, W. B. (2013). Perceptual coding of high-quality digital audio. Proceedings of the IEEE, 101, 1905–1919.

    Article  Google Scholar 

  • Bregman, A. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bronkhorst, A. W. (2015). The cocktail-party problem revisited: early processing and selection of multi-talker speech. Attention, Perception, & Psychophysics, 77, 1465–1487.

    Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with 2 ears. Journal of the Acoustical Society of America, 25, 975–979.

    Article  Google Scholar 

  • Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341–370.

    Article  PubMed  Google Scholar 

  • Cousineau, M., Oxenham, A. J., & Peretz, I. (2015). Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis. Neuropsychologia, 66, 293–301.

    Article  PubMed  Google Scholar 

  • Dannenbring, G. L. (1976). Perceived auditory continuity with alternately rising and falling frequency transitions. Canadian Journal of Psychology, 30, 99–114.

    Article  PubMed  Google Scholar 

  • Dawes, P., Emsley, R., Cruickshanks, K. J., Moore, D. R., Fortnum, H., Edmondson-Jones, M., McCormack, A., & Munro, K. J. (2015). Hearing loss and cognition: the role of hearing aids, social isolation and depression. PLoS One, 10, e0119616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denham, S. L., & Winkler, I. (2006). The role of predictive models in the formation of auditory streams. Journal of Physiology, Paris, 100, 154–170.

    Article  PubMed  Google Scholar 

  • Denham, S. L., Gyimesi, K., Stefanics, G., & Winkler, I. (2013). Perceptual bi-stability in auditory streaming: how much do stimulus features matter? Learning and Perception, 5, 73–100.

    Article  Google Scholar 

  • Denham, S. L., Bőhm, T. M., Bendixen, A., Szalárdy, O., Kocsis, Z., Mill, R., & Winkler, I. (2014). Stable individual characteristics in the perception of multiple embedded patterns in multistable auditory stimuli. Frontiers in Neuroscience, 8, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deroche, M. L., Culling, J. F., Chatterjee, M., & Limb, C. J. (2014). Speech recognition against harmonic and inharmonic complexes: spectral dips and periodicity. Journal of the Acoustical Society of America, 135, 2873–2884.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, N., & Simon, J. Z. (2012). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the United States of America, 109, 11854–11859.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, Y., He, Y., Ross, B., Bardouille, T., Wu, X., Li, L., & Alain, C. (2011). Human auditory cortex activity shows additive effects of spectral and spatial cues during speech segregation. Cerebral Cortex, 21, 698–707.

    Article  PubMed  Google Scholar 

  • Elmer, S., Rogenmoser, L., Kühnis, J., & Jäncke, L. (2015). Bridging the gap between perceptual and cognitive perspectives on absolute pitch. Journal of Neuroscience, 35, 366–371.

    Article  PubMed  Google Scholar 

  • Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: an attempt to integrate human and animal research. Psychophysiology, 51, 111–123.

    Article  PubMed  Google Scholar 

  • Escera, C., Leung, S., & Grimm, S. (2014). Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans. Brain Topography, 27, 527–538.

    Article  PubMed  Google Scholar 

  • Fenn, K. M., Shintel, H., Atkins, A. S., Skipper, J. I., Bond, V. C., & Nusbaum, H. C. (2011). When less is heard than meets the ear: change deafness in a telephone conversation. Quarterly Journal of Experimental Psychology, 64, 1442–1456.

    Article  Google Scholar 

  • Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological Reviews, 91, 1357–1392.

    Article  PubMed  Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 815–836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138.

    Article  PubMed  Google Scholar 

  • Füllgrabe, C., Moore, B. C., & Stone, M. A. (2015). Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Frontiers in Aging Neuroscience, 6, 347.

    PubMed  PubMed Central  Google Scholar 

  • Galbraith, G. C., Arbagey, R. B., Comerci, N., & Rector, P. M. (1995). Intelligible speech encoded in the human brain stem frequency-following response. Neuroreport, 6, 2363–2367.

    Article  PubMed  Google Scholar 

  • Garde, M. M., & Cowey, A. (2000). „Deaf hearing“: unacknowledged detection of auditory stimuli in a patient with cerebral deafness. Cortex, 36, 71–80.

    Article  PubMed  Google Scholar 

  • Getzmann, S., Lewald, J., & Falkenstein, M. (2014). Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences. Frontiers in Neuroscience, 8, 413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gokhale, S., Lahoti, S., & Caplan, L. R. (2013). The neglected neglect: auditory neglect. JAMA Neurology, 70, 1065–1069.

    Article  PubMed  Google Scholar 

  • Gourévitch, B., Edeline, J. M., Occelli, F., & Eggermont, J. J. (2014). Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nature Reviews Neuroscience, 15, 483–491.

    Article  PubMed  Google Scholar 

  • Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 290, 181–197.

    Article  PubMed  Google Scholar 

  • Háden, G. P., Németh, R., Török, M. & Winkler, I. (2015). Predictive processing of pitch trends in newborn infants. Brain Research, 1626, 14–20.

    Google Scholar 

  • He, C., & Trainor, L. J. (2009). Finding the pitch of the missing fundamental in infants. Journal of Neuroscience, 29, 7718–8822.

    Article  PubMed  Google Scholar 

  • Hedrick, M. S., & Madix, S. G. (2009). Effect of vowel identity and onset asynchrony on concurrent vowel identification. Journal of Speech, Language, and Hearing Research, 52, 696–705.

    Article  PubMed  Google Scholar 

  • Henry, M., & Herrmann, B. (2014). Low-frequency neural oscillations support dynamic attending in temporal context. Timing & Time Perception, 2, 62–68.

    Article  Google Scholar 

  • Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences of the United States of America, 109, 20095–20100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill, K. T., Bishop, C. W., Yadav, D., & Miller, L. M. (2011). Pattern of BOLD signal in auditory cortex relates acoustic response to perceptual streaming. BMC Neuroscience, 12, 85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohmann, V. (2008). Signal processing in hearing aids. Handbook of Signal Processing in Acoustics, Bd. II, S. 205–212). New York: Springer.

    Google Scholar 

  • Horváth, J., & Burgyán, A. (2011). Distraction and the auditory attentional blink. Attention, Perception, & Psychophysics, 73, 695–701.

    Article  Google Scholar 

  • Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.

    Article  PubMed  Google Scholar 

  • Kaernbach, C. (2003). Auditory sensory memory and short-term memory. In C. Kaernbach, E. Schröger, & H. Müller (Hrsg.), Psychophysics beyond Sensation: Laws and Invariants of Human Cognition. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Kam, J. W., Dao, E., Stanciulescu, M., Tildesley, H., & Handy, T. C. (2013). Mind wandering and the adaptive control of attentional resources. Journal of Cognitive Neuroscience, 25, 952–960.

    Article  PubMed  Google Scholar 

  • Kavšek, M. J. (1996). Multidimensionale Skalierung von Farbmustern aus der DIN-Farbenkarte. Zeitschrift für Experimentelle Psychologie, 43, 547–570.

    PubMed  Google Scholar 

  • Koch, I., Lawo, V., Fels, J., & Vorländer, M. (2011). Switching in the cocktail party: exploring intentional control of auditory selective attention. Journal of Experimental Psychology: Human Perception and Performance, 37, 1140–1147.

    PubMed  Google Scholar 

  • Koelsch, S. (2012). Brain and Music. Chichester: Wiley-Blackwell.

    Google Scholar 

  • Kollmeier, B., & Koch, R. (1994). Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction. Journal of the Acoustical Society of America, 95, 1593–1602.

    Article  PubMed  Google Scholar 

  • Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11, 599–605.

    Article  PubMed  Google Scholar 

  • Kraus, N., & Nicol, T. (2014). The cognitive auditory system: The role of learning in shaping the biology of the auditory system. In A. N. Popper, & R. R. Fay (Hrsg.), Perspectives on Auditory Research Handbook of Auditory Research. (S. 299–319). New York: Springer.

    Chapter  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. Journal of Neuroscience, 29, 14077–14085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakatos, P., Musacchia, G., O’Connel, M. N., Falchier, A. Y., Javitt, D. C., & Schroeder, C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77, 750–761.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange, K. (2009). Brain correlates of early auditory processing are attenuated by expectations for time and pitch. Brain and Cognition, 69, 127–137.

    Article  PubMed  Google Scholar 

  • Lehmann, A., & Schönwiesner, M. (2014). Selective attention modulates human auditory brainstem responses. PLoS One, 9, e85442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipp, O. V., Neumann, D. L., Pretorius, N. R., & McHugh, M. J. (2003). Attentional blink modulation during sustained and after discrete lead stimuli presented in three sensory modalities. Psychophysiology, 40, 285–290.

    Article  PubMed  Google Scholar 

  • Massaro, D. W. (1975). Experimental psychology and information processing. Chicago: Rand McNally.

    Google Scholar 

  • Merabet, L. B., & Pascual-Leone, A. (2010). Neural reorganization following sensory loss: the opportunity of change. Nature Reviews Neuroscience, 11, 44–52.

    Article  PubMed  Google Scholar 

  • Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485, 233–236.

    Article  PubMed  Google Scholar 

  • Moon, I. J., Won, J. H., Park, M. H., Ives, D. T., Nie, K., Heinz, M. G., Lorenzi, C., & Rubinstein, J. T. (2014). Optimal combination of neural temporal envelope and fine structure cues to explain speech identification in background noise. Journal of Neuroscience, 34, 12145–12154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, B. C. (2008). The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. Journal of the Association for Research in Otolaryngology, 9, 399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instruction. Quarterly Journal of Experimental Psychology, 9, 56–60.

    Article  Google Scholar 

  • Morlet, D., & Fischer, C. (2014). MMN and novelty P3 in coma and other altered states of consciousness: a review. Brain Topography, 27, 467–479.

    Article  PubMed  Google Scholar 

  • Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201–288.

    Article  Google Scholar 

  • Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.

    Article  PubMed  Google Scholar 

  • Okamoto, H., Stracke, H., Stoll, W., & Pantev, C. (2010). Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1207–1210.

    Article  PubMed  Google Scholar 

  • O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-Cunningham, B. G., Slaney, M., Shamma, S. A. & Lalor, E. C. (2015). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex, 25, 1697–1706.

    Google Scholar 

  • Pantev, C., Rudack, C., Stein, A., Wunderlich, R., Engell, A., Lau, P., Wollbrink, A., & Shaykevich, A. (2014). Study protocol: Münster tinnitus randomized controlled clinical trial-2013 based on tailor-made notched music training (TMNMT). BMC Neurology, 14, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Partanen, E., Kujala, T., Näätänen, R., Liitola, A., Sambeth, A., & Huotilainen, M. (2013). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences of the United States of America, 110, 15145–15150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plakke, B., & Romanski, L. M. (2014). Auditory connections and functions of prefrontal cortex. Frontiers in Neuroscience, 8, 199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pronk, M., Deeg, D. J., Smits, C., Tilburg, T. G. van, Kuik, D. J., Festen, J. M., & Kramer, S. E. (2011). Prospective effects of hearing status on loneliness and depression in older persons: identification of subgroups. International Journal of Audiology, 50, 887–896.

    Article  PubMed  Google Scholar 

  • Puschmann, S., Sandmann, P., Ahrens, J., Thorne, J., Weerda, R., Klump, G., Debener, S., & Thiel, C. M. (2013). Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage, 75, 155–164.

    Article  PubMed  Google Scholar 

  • Rahne, T., Rasinski, C., & Neumann, K. (2010). Measuring timbre discrimination with cross-faded synthetic tones. Journal of Neuroscience Methods, 189, 176–179.

    Article  PubMed  Google Scholar 

  • Ross, B. (2013). Steady-state auditory evoked responses. In G. G. Celesia (Hrsg.), Disorders of peripheral and central auditory processing Handbook of Clinical Neurophysiology, (Bd. 10, S. 155–176). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Roswandowitz, C., Mathias, S. R., Hintz, F., Kreitewolf, J., Schelinski, S., & Kriegstein, K. von (2014). Two cases of selective developmental voice-recognition impairments. Current Biology, 24, 2348–2353.

    Article  PubMed  Google Scholar 

  • Roye, A., Jacobsen, T., & Schröger, E. (2013). Discrimination of personally significant from nonsignificant sounds: A training study. Cognitive, Affective, & Behavioral Neuroscience, 13, 930–943.

    Article  Google Scholar 

  • Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2011). Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the United States of America, 108, 15516–15521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandmann, P., Dillier, N., Eichele, T., Meyer, M., Kegel, A., Pascual-Marqui, R. D., Marcar, V. L., Jäncke, L., & Debener, S. (2012). Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain, 135, 555–568.

    Article  PubMed  Google Scholar 

  • Saupe, K., Schröger, E., Andersen, S. K., & Müller, M. M. (2009). Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Frontiers in Human Neuroscience, 3, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaette, R. (2014). Tinnitus in men, mice (as well as other rodents), and machines. Hearing Research, 311, 63–71.

    Article  PubMed  Google Scholar 

  • Schaette, R., Turtle, C., & Munro, K. J. (2012). Reversible induction of phantom auditory sensations through simulated unilateral hearing loss. PLoS One, 7, e35238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnupp, J., Nelken, I., & King, A. (2011). Auditory neuroscience: Making sense of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Schröger, E. (1998). Measurement and interpretation of the Mismatch Negativity (MMN). Behavior Research Methods, Instruments, & Computers, 30, 131–145.

    Article  Google Scholar 

  • Schröger, E. (2007). Mismatch negativity: a microphone into auditory memory. Journal of Psychophysiology, 21, 138–146.

    Article  Google Scholar 

  • Schröger, E., SanMiguel, I., & Bendixen, A. (2013). Prädiktive Modellierung in der auditiven Wahrnehmung. In E. Schröger, & S. Koelsch (Hrsg.), Affektive und Kognitive Neurowissenschaft. Enzyklopädie der Psychologie (Serie II: Kognition, (Bd. 5, S. 11–45). Göttingen: Hogrefe.

    Google Scholar 

  • Schröger, E., Bendixen, A., Denham, S. L., Mill, R. W., Böhm, T. M., & Winkler, I. (2014). Predictive regularity representations in violation detection and auditory stream segregation: From conceptual to computational models. Brain Topography, 27, 565–577.

    Article  PubMed  Google Scholar 

  • Schröger, E., Marzecová, A., & SanMiguel, I. (2015). Attention and prediction in human audition: a lesson from cognitive psychophysiology. European Journal of Neuroscience, 41, 641–664.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz, J.-L., Grimault, N., Hupé, J.-M., Moore, B. C. J., & Pressnitzer, D. (2012). Multistability in perception: Binding sensory modalities, an overview. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 896–905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sergeyenko, Y., Lall, K., Liberman, M. C., & Kujawa, S. G. (2013). Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. Journal of Neuroscience, 33, 13686–13694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34, 114–123.

    Article  PubMed  Google Scholar 

  • Sheridan, C. J., Matuz, T., Draganova, R., Eswaran, H., & Preissl, H. (2010). Fetal magnetoencephalography – achievements and challenges in the study of prenatal and early postnatal brain responses: A review. Infant and Child Development, 19, 80–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinn-Cunningham, B., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12, 283–299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoe, E., & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear & Hearing, 31, 302–324.

    Article  Google Scholar 

  • Sussman, E. S. (2007). A new view on the MMN and attention debate: the role of context in processing auditory events. Journal of Psychophysiology, 21, 164–175.

    Article  Google Scholar 

  • Szalárdy, O., Winkler, I., Schröger, E., Widmann, A., & Bendixen, A. (2013). Foreground-background discrimination indicated by event-related brain potentials in a new auditory multistability paradigm. Psychophysiology, 50, 1239–1250.

    Article  PubMed  Google Scholar 

  • Thorne, J., & Debener, S. (2014). Look now and hear what’s coming: On the functional role of cross-modal phase reset. Hearing Research, 307, 144–152.

    Article  PubMed  Google Scholar 

  • Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 242–248.

    Article  Google Scholar 

  • Warren, R. M. (1968). Verbal transformation effect and auditory perceptual mechanisms. Psychological Bulletin, 70, 261–270.

    Article  PubMed  Google Scholar 

  • Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167, 392–393.

    Article  PubMed  Google Scholar 

  • Warzybok, A., Rennies, J., Brand, T., & Kollmeier, B. (2014). Prediction of binaural speech intelligibility in normal-hearing and hearing-impaired listeners: a psychoacoustically motivated extension. In Fortschritte der Akustik (S. 351–352). Berlin/Oldenburg: DEGA.

    Google Scholar 

  • Wetzel, N., & Schröger, E. (2014). On the development of auditory distraction: A review. PsyCh Journal, 3, 72–91.

    Article  PubMed  Google Scholar 

  • Winkler, & Czigler, I. (1998). Mismatch negativity: deviance detection or the maintenance of the ’standard’. NeuroReport, 9, 3809–3813.

    Article  PubMed  Google Scholar 

  • Winkler, I, & Schröger, E. (2015). Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain & Language, 148, 1–22.

    Google Scholar 

  • Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.

    Article  PubMed  Google Scholar 

  • Winkler, I., Denham, S. L., Mill, R., Bőhm, T. M., & Bendixen, A. (2012). Multistability in auditory stream segregation: A predictive coding view. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 367, 1001–1012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zion Golumbic, E. M., Poeppel, D., & Schroeder, C. E. (2012). Temporal context in speech processing and attentional stream selection: A behavioral and neural perspective. Brain & Language, 122, 151–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Bendixen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bendixen, A., Schröger, E. (2017). Auditive Informationsverarbeitung. In: Müsseler, J., Rieger, M. (eds) Allgemeine Psychologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53898-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53898-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53897-1

  • Online ISBN: 978-3-642-53898-8

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics