Skip to main content

Enhancement of Heat Transfer During Condensation

  • Chapter
Heat Transfer in Condensation and Boiling

Part of the book series: International Series in Heat and Mass Transfer ((HEAT))

Abstract

During film condensation of water vapor one achieves in practice mean heat transfer coefficients of between approximately 4000 W/m2K and 10 000 W/m2K. If vapors of organic substances are condensed, the mean heat transfer coefficients are seldom over 2500 W/m2K. By contrast, heat transfer coefficients during drop condensation of organic vapors are ten to twenty times greater than those of film condensation. The heat transfer coefficients of the coolant lie between 4000 W/m2K (achieved with, for example, cooling water of 35 °C, velocity 1.1 m/s, tube inner diameter 0.04 m, tube length 1.33 m), and 6000 W/m2K (upon raising the water velocity to 1.8 m/s). Because the thermal resistance of the metallic wall can generally be ignored, the heat transfer coefficient on the condensate side controls the heat transfer, especially during the film condensation of organic vapors. It is, therefore, very worthwhile to seek ways to improve the heat transfer coefficient on the condensate side. In the literature, one finds a great number of suggestions, of which only a few have found their way into practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Renz, U.: Maßnahmen zur Verbesserung des Wärmeübergangs bei der Kondensation. In: Wärmeaustauscher, Neuere Entwicklungen und Berechnungsmethoden. Düsseldorf: VDI-Verlag 1983, S. 239–276

    Google Scholar 

  2. Berman, L. D.: Influence of vapour velocity on heat transfer with filmwise condensation on a horizontal tube. Therm. Eng. 26 (1978) 16–20

    Google Scholar 

  3. Spencer, D. L.; Ibele, W. E.: Laminar film condensation of a saturated and superheated vapor on a surface with a controlled temperature distribution. Proc. IIIrd Int. Heat Transfer Conf., Chicago 1966, Vol. II, p. 337–347

    Google Scholar 

  4. Henrici, H.: Kondensation von R11, R12 und R22 an glatten und berippten Rohren. Kältetechnik 15 (1963) 251–256

    Google Scholar 

  5. Katz, D. L.; Hope, R. E.; Zatsko, St. C.; Robinson, D. B.: Condensation of Freon 12 with finned tubes. Refrig. Eng. 53 (1947) 211–215

    Google Scholar 

  6. Gregorig, R.: Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen. Z. Angew. Math. Phys. 5 (1954) 36–49

    Article  MATH  Google Scholar 

  7. Webb, R. L.: Generalized procedure for the design and Optimization of fluted Gregorig condensing surfaces. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 101 (1979) 335–339

    Article  Google Scholar 

  8. Mori, Y.; Hijikata, K.; Hirasawa, S.; Nakayama, W.: Optimized performance of condensers with outside condensing surface, condensation heat transfer. Am. Soc. Mech. Eng. 18th Nat. Heat Transfer Conf., San Diego 1979, p. 55–62

    Google Scholar 

  9. Panchal, C. B.; Bell, K. J.: Analysis of Nusselt-type condensation on a triangular fluted surface. Int. J. Heat. Mass Transfer 25 (1982) 1909–1911

    Article  Google Scholar 

  10. Lin Ji-fang, Hsu Tung-chi, Pei Jue-min: Heat transfer of condensation on a vertical V-type corrugated tube—A new physical model. 7th Int. Heat Transfer Conf., München 1982, Vol. V, p. 119–124

    Google Scholar 

  11. Barnes, C. G.; Rohsenow, W. M.: Vertical fluted tubes condenser performance prediction. 7th Int. Heat Transfer Conf., München 1982, Vol. V, p. 39–43

    Google Scholar 

  12. Adamek, Th.: Kondensation an Profilrohren. In: Wärmeaustauscher, Neuere Entwicklungen und Berechnungsmethoden. Düsseldorf: VDI-Verlag 1983, S. 277–299

    Google Scholar 

  13. Marto, P. J.; Reilly, D. J.; Fenner, J. A.: An experimental comparison of enhanced heat transfer condenser tubing. Advances in Enhanced Heat Transfer. Am. Soc. Mech. Eng. 18th Nat. Heat Transfer Conf., San Diego, 1979, p. 183–191

    Google Scholar 

  14. Azer, N. Z.; Said, S. A.: Augmentation of condensation heat transfer by internally finned tubes and twisted tape inserts. Advances in Enhanced Heat Transfer. Am. Soc. Mech. Eng. 18th Nat. Heat Transfer Conf., San Diego 1979, p. 33–38

    Google Scholar 

  15. Royal, J. H.; Bergles, A. E.: Augmentation of horizontal in-tube condensation by means of twisted tape inserts and internally finned tubes. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 100 (1978) 17–24

    Article  Google Scholar 

  16. Akers, W. W.; Deans. H. A.; Crosser, O. K.: Condensing heat transfer within horizontal tubes. Chem. Eng. Progr. Symp. Ser. 55(1959) 19, 171–176

    Google Scholar 

  17. Khanpara, J. C.; Bergles, A. E.; Pate, M. B.: Augmentation of R-113 in-tube condensation with micro-fintubes. Trans. Am. Soc. Heating Refrig. Air Cond. Eng. (ASHRAE) 92, part 2B (1986) 506–524

    Google Scholar 

  18. Schlager, L. M.; Pate, M. B.; Bergles, A. E.: Evaporation and condensation of refrigerantoil-mixtures in a smooth tube and a micro-fin tube. Trans. Am. Soc. Heating Refrig. Air Cond. Eng. (ASHRAE) 94, part 2 (1988) 149–166

    Google Scholar 

  19. Schlager, L. M.; Pate, M. B.; Bergles, A. E.: Evaporation and condensation of refrigerant-oilmixtures in a low-fin tube. Trans. Am. Soc. Heating Refrig. Air Cond. Eng. (ASHRAE) 94, part 2 (1988) 1176–1194

    Google Scholar 

  20. Schlager, L. M.; Pate, M. B.; Bergles, A. E.: Heat transfer and pressure drop during evaporation and condensation of R22 in horizontal micro-fin tubes. Int. J. of Refrigeration 12 (1989) 6–14

    Article  Google Scholar 

  21. Chun, K. R.; Seban, R. A.: Heat transfer to evaporating liquid films. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 93 (1971) 391–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephan, K. (1992). Enhancement of Heat Transfer During Condensation. In: Heat Transfer in Condensation and Boiling. International Series in Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52457-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52457-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52459-2

  • Online ISBN: 978-3-642-52457-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics