Skip to main content

Condensation of Vapors of Miscible Liquids

  • Chapter
Heat Transfer in Condensation and Boiling

Part of the book series: International Series in Heat and Mass Transfer ((HEAT))

  • 852 Accesses

Abstract

In the process industry, vapor mixtures are frequently liquefied, or the vapors contain inert gases, which by definition do not condense under the prevailing conditions. Their influence on the heat transfer during condensation was treated together with the deviations from the Nusselt film condensation theory in Sect. 2.2.3. There is yet to be considered how the heat transfer is changed if the condensate consists of a homogeneous phase and all components are essentially liquefied. Depending upon the purpose of the application, the vapor can be completely or partially condensed, so that vapor of a generally different composition than that of the entering vapor leaves the condenser. Such apparatus is designated as partial condenser or in rectification columns as dephlegmator. Because during the condensation of vapor mixtures as a rule the components with the higher boiling point condense first, and because the residual vapor thus becomes poor in these components, there is formed a concentration profile that is variable with the flow path and which influences considerably the heat exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Claude, G.: Air liquide, oxygène, azote, gas rares. 2. ed. Paris: Dunod 1926

    Google Scholar 

  2. Lucas, K.: Die laminare Filmkondensation binärer Dampfgemische. Habil.-Schrift, Ruhr-Univ. Bochum 1974

    Google Scholar 

  3. Tamir, A.; Taitel, Y.; Schlünder, E. U.: Direct contact condensation of binary mixtures. Int. J. Heat Mass Transfer 17 (1974) 1253–1260

    Article  Google Scholar 

  4. Ford, J. D.; Missen, R. W.: On the conditions for stability of falling films subject to surface tension disturbances; the condensation of binary vapors. Can. J. Chem. Eng. 46 (1968) 309–312

    Article  Google Scholar 

  5. Ford, J. D.: Ph.D. Thesis, Univ. of Toronto 1967

    Google Scholar 

  6. Tamir, A.: “Mixed” pattern condensation of multicomponent mixtures. Chem. Eng. J, 17 (1979) 141–156

    Article  Google Scholar 

  7. Ackermann, G.: Wärmeübergang und molekulare Stoffübertragung im gleichen Feld bei großen Temperatur-und Partialdruckdifferenzen. VDI-Forschungsh. 382 (1937) 1–16

    Google Scholar 

  8. Silver, L.: Gas cooling with aqueous condensation. Trans. Inst. Chem. Eng. 25 (1947) 30–42

    Google Scholar 

  9. Bell, K. J.; Ghaly, M. A.: An approximate generalized design method for multicomponent/ partial condensers. Am. Inst. Chem. Eng. Symp. Ser. 69 (1972) 72–79

    Google Scholar 

  10. Ward, D. J.: How to design a multicomponent partial condenser. Petro-Chem. Eng. 32 (1960) C42–C48

    Google Scholar 

  11. Butterworth, D.: A calculation method for shellside heat exchangers in which the overall coefficient varies along the length. Nat. Eng. Lab. (U.K.) Rep. 510 (1975) 56–71

    Google Scholar 

  12. Emerson, W. H.: Effective tube-side temperature differences in multipass heat exchangers with nonuniform heat transfer coefficients and specific heats. Nat. Eng. Lab. (U.K.) Rep. 590 (1975) 32–55

    Google Scholar 

  13. Roetzel, W.: Näherungsverfahren zur Berechnung von Kondensatoren für Dampfgemische. Wärme Stoffübertrag. 8 (1975) 211–218

    Article  Google Scholar 

  14. Stephan, K.; Laesecke, A.: The influence of suction on heat and mass transfer in condensation of mixed vapors. Wärme Stoffübertrag. 13 (1980) 115–123

    Article  Google Scholar 

  15. Sparrow, E. M.; Minkowycz, W. J.; Saddy, M.: Forced convection condensation in the presence of noncondensables and interfacial resistance. Int. J. Heat Mass Transfer 10 (1967) 1829–1845

    Article  Google Scholar 

  16. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.: Transport Phenomena. New York: Wiley 1962, p. 663

    Google Scholar 

  17. Colburn, A. P.; Hougen, O. A.: Design of cooler condenser for mixtures of vapors with noncondensing gases. Ind. Eng. Chem. 26 (1934) 1178–1182

    Article  Google Scholar 

  18. Krishna, R.; Standart, G. L.: A multicomponent film model incorporating a general matrix method of solution to the Maxwell–Stefan equation. Am. Inst. Chem. Eng. J. 22 (1976) 383–389

    Article  Google Scholar 

  19. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.: Molecular theory of gases and liquids. New York: Wiley 1967, p. 516

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephan, K. (1992). Condensation of Vapors of Miscible Liquids. In: Heat Transfer in Condensation and Boiling. International Series in Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52457-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52457-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52459-2

  • Online ISBN: 978-3-642-52457-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics