Skip to main content

Part of the book series: International Series in Heat and Mass Transfer ((HEAT))

Abstract

Nusselt already extended the film condensation theory and took into consideration the fact that the vapor flowing along the condensate film influences the velocity in the condensate. The boundary condition to Eq. (2.5) then no longer reads ∂w/∂=0 at y=δ but rather the velocity has a finite gradient at the free film surface corresponding to the shear stress exerted by the flowing vapor. Accordingly, in Eq. (2.5) for the velocity profile

$$w = - \frac{{{\varrho _L}g}}{{2{\eta _L}}}{y^2} + {c_1}y + {c_0}$$

the coefficients c 1 and c 0 are to be so determined that the boundary conditions

$$w\left( {y = 0} \right) = 0and{\eta _L}{\left( {\partial w/\partial y} \right)_{y = \delta }} = \pm {\tau _\delta }$$
(4.1)

are fulfilled, whereby the positive sign holds for downward flowing vapor and the negative one for vapor flowing upward. For the calculation of the shear stress at the phase interface, one assumes equality of pressure and friction forces in the vapor space. Let the pressure drop along the flow path dx be dp. Then

$${\tau _\delta }d\pi = \frac{{{d^2}\pi }}{4}\frac{{dp}}{{dx}}$$
(4.2)

holds for the tube flow. On the other hand, there holds for the pressure drop

$$\frac{{dp}}{{dx}} = \zeta \frac{{{\varrho _G}w_G^2}}{d}$$
(4.3)

Herewith we obtain

$${\tau _\delta } = \zeta \frac{{{\varrho _G}w_G^2}}{4}$$
(4.4)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Jakob, M.; Erk, S.; Eck, H.: Verbesserte Messungen und Berechnungen des Wärmeübergangs beim Kondensieren strömenden Dampfes in einem vertikalen Rohr. Phys. Z. 36 (1935) 73–84

    Google Scholar 

  2. Rohsenow, W. M.; Webber, J. H.; Ling, A. T.: Effect of vapor velocity on laminar and turbulent film condensation. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transf. 78(1956)1637–1643

    Google Scholar 

  3. Jones, W. P.; Renz, U.: Condensation from a turbulent stream into a vertical surface. Int. J. Heat Mass Transfer 17 (1974) 1009–1014

    Google Scholar 

  4. Carpenter, E. F.; Colburn, A. P.: The effect of vapor velocity on condensation inside tubes. Proc. Inst. Mech. Eng., General Discussion Heat Transfer, 1951, p. 20–26

    Google Scholar 

  5. Mostofizadeh, Ch.; Stephan, K.: Strömung und Wärmeübergang bei der Oberflächenver-dampfung und Filmkondensation. Wärme Stoffübertrag. 15 (1981) 93–115

    Article  Google Scholar 

  6. Dukler, A. E.: Fluid mechanics and heat transfer in vertical falling film systems. Chem. Eng. Prog. Symp. Ser. 56 (1960) 1–10

    Google Scholar 

  7. Deissler, R. G.: Analytical and experimental investigation of adiabatic turbulent flow in smooth tubes. Nat. Advis. Comm. Aeronaut. Tech. Notes 2138 (1950) 24–25

    Google Scholar 

  8. Deissler, R. G.: Analysis of turbulent heat transfer, mass transfer and friction in smooth tubes at high Prandtl and Schmidt numbers. Nat. Advis. Comm. Aeronaut. Tech. Notes 3145 (1954) 8

    Google Scholar 

  9. von Kàrmàn, Th: Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 58(1930) und Verhandlg. d. III. Int. Kongr. Tech. Mechanik, Stockholm, Teil I, 85(1930). Nat. Advis. Comm. Aeronaut. Tech. Notes 611(1931)

    Google Scholar 

  10. Chun, K. R.; Seban, R. A.: Heat transfer to evaporating liquid films. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 93 (1971) 391–396

    Article  Google Scholar 

  11. Domanski, I. V.; Solokov, V.I.: Heat transfer from a heated tube wall to boiling, downward flowing liquid films (in Russian). Zh. Prikl. Khim. 40 (1967) 66–71

    Google Scholar 

  12. Hewitt, G. F.: Analysis of annular two-phase flow, application of the Dukler analysis to vertical upward flow in a tube. AERE-R 3680, H.M.S.O.

    Google Scholar 

  13. Lee, J.: Turbulent velocity profile of a vertical film flow. Chem. Eng. Sci. 20 (1965) 533–536

    Article  Google Scholar 

  14. Levich, V. G.: Physiochemical Hydrodynamics. Englewood Cliffs, New Jersey: Prentice Hall 1962

    Google Scholar 

  15. Lamourelle, A. P.; Sandall, O. C.: Gas absorption into turbulent liquid. Chem. Eng. Sci. 27 (1972) 1035–1043

    Article  Google Scholar 

  16. Mills, A. F.; Chung, D. K.: Heat transfer across turbulent falling films. Int. J. Heat Mass Transfer 16 (1973) 694–696

    Article  Google Scholar 

  17. Brötz, W.: Ober die Vorausberechnung der Absorptionsgeschwindigkeit von Gasen in strömenden Flüssigkeiten. Chem. Ing. Tech. 26 (1954) 470–478

    Article  Google Scholar 

  18. Blangetti, F.: Lokaler Wärmeübergang bei der Kondensation mit überlagerter Konvektion im vertikalen Rohr. Diss. Univ. Karlsruhe 1979

    Google Scholar 

  19. Van Driest, E. R.: On turbulent flow near a wall. J. Aerosol Sci. 23 (1956) 1007–1010

    MATH  Google Scholar 

  20. Pantankar, S. V.; Spalding, D. B.: Heat and mass transfer in boundary layers. 2nd ed. London: Intertext Books 1970, p. 21

    Google Scholar 

  21. Bergelin, O. P.; Kegel, P. K.; Carpenter, F. G.; Gazley, C.: Co-current gas liquid flow. Part II. Flow in vertical tubes. Am. Soc. Mech. Eng., Heat Transfer Fluid Mech. Inst. (1949) 19–28

    Google Scholar 

  22. Shah, M. M.: A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transfer 22 (1979) 547–556

    Article  Google Scholar 

  23. Wallis, G. B.: One dimensional two phase flow. New York: McGraw-Hill 1969

    Google Scholar 

  24. Tandon, T. N.; Varma, H. K.; Gupta, C. P.: A new flow regime map for condensation inside horizontal tubes. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 104 (1982) 763–768

    Article  Google Scholar 

  25. Jaster, H.; Kosky, P. G.: Condensation heat transfer in a mixed flow regime. Int. J. Heat Mass Transfer 19 (1976) 95–99

    Article  Google Scholar 

  26. Zivi, S. M.: Estimation of steady state void fraction by means of the principle of minimum entropy production. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 86 (1964) 247–252

    Article  Google Scholar 

  27. Collier, J. G.: Convective boiling and condensation. New York: McGraw-Hill 1972

    Google Scholar 

  28. Mayinger, F.: Strömung und Wärmeübergang in Gas-Flüssigkeits-Gemischen. Wien: Springer 1982

    Google Scholar 

  29. Ahmad, S. Y.: Axial distribution of bulk temperature and void fraction in a heated channel with inlet subcooling. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 92 (1970) 595–609

    Article  Google Scholar 

  30. Butterworth, D.: Developments in the design of shell-and-tube condensers. Am. Soc. Mech. Eng., preprint 77-WA/HT-24

    Google Scholar 

  31. Lockhart, R. W.; Martinelli, R. C.: Proposed correlation data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45 (1949) 39–48

    Google Scholar 

  32. Palen, J. W.; Breber, G.; Taborek, J.: Prediction of flow regimes in horizontal tube condensation. Heat Transfer Eng. 1 (1979) 47–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephan, K. (1992). Condensation of Flowing Vapors. In: Heat Transfer in Condensation and Boiling. International Series in Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52457-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52457-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52459-2

  • Online ISBN: 978-3-642-52457-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics