Skip to main content

The representation of a number as a sum of four squares

  • Chapter
Elliptic Functions

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 281))

  • 1301 Accesses

Abstract

We have seen in Chapter VIII that the identity

$$ % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqaH3oaAdaqadaWdaeaapeGaamOEaaGaayjkaiaawMcaaiabg2da % 9iaadwgapaWaaWbaaSqabeaapeGaeqiWdaNaamyAaiaadQhacaGGVa % GaaGymaiaaikdaaaGccqaH4oqCpaWaaSbaaSqaa8qacaaIZaaapaqa % baGcpeWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qaca % aIYaaaaiabgUcaRmaalaaapaqaa8qacaWG6baapaqaa8qacaaIYaaa % aiaacYcacaaIZaGaamOEaaGaayjkaiaawMcaaiaacYcaciGGjbGaai % yBaiaadQhacqGH+aGpcaaIWaaaaa!535D! \eta \left( z \right) = {e^{\pi iz/12}}{\theta _3}\left( {\frac{1}{2} + \frac{z}{2},3z} \right),\operatorname{Im} z > 0 $$
((1.1))

, which connects Dedekind’s η-function with the theta-function 6 3 implies Euler’s theorem on pentagonal numbers. That was proved by analytical methods in two different ways. The first consisted in representing θ3(υ, z), initially defined by an infinite series, as an infinite product, and identifying the defining product of η(z) with that which results from the right-hand side of (1.1). The second consisted in combining the transformation formula for θ3(υ, z), namely

$$ % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqaH4oqCpaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeWaaeWaa8aa % baWdbiaaicdacaGGSaGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aaba % WdbiaaikdaaaaacaGLOaGaayzkaaGaeyypa0ZaaOaaa8aabaWdbmaa % laaapaqaa8qacaWG6baapaqaa8qacaWGPbaaaiaac6caaSqabaGccq % aH4oqCpaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeWaaeWaa8aabaWd % biaaicdacaGGSaGaamOEaaGaayjkaiaawMcaaiaacYcaciGGjbGaai % yBaiaadQhacqGH+aGpcaaIWaaaaa!4F1F! {\theta _3}\left( {0, - \frac{1}{2}} \right) = \sqrt {\frac{z}{i}.} {\theta _3}\left( {0,z} \right),\operatorname{Im} z > 0 $$
((1.2))

, with the functional equation of η(z), namely

$$ % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqaH3oaAdaqadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiaaigda % a8aabaWdbiaaikdaaaaacaGLOaGaayzkaaGaeyypa0ZaaOaaa8aaba % Wdbmaalaaapaqaa8qacaWG6baapaqaa8qacaWGPbaaaiabeE7aOnaa % bmaapaqaa8qacaWG6baacaGLOaGaayzkaaaaleqaaOGaaiilaiGacM % eacaGGTbGaamOEaiabg6da+iaaicdaaaa!4923! \eta \left( { - \frac{1}{2}} \right) = \sqrt {\frac{z}{i}\eta \left( z \right)} ,\operatorname{Im} z > 0 $$
((1.3))

, (1.3) so as to construct a modular function which vanishes identically in the upper half-plane Im z>0, and thereby yields (1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandrasekharan, K. (1985). The representation of a number as a sum of four squares. In: Elliptic Functions. Grundlehren der mathematischen Wissenschaften, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52244-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52244-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52246-8

  • Online ISBN: 978-3-642-52244-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics