Skip to main content

Various Continuity Properties of the Deconvolution (or Epigraphical Difference)

  • Conference paper
Advances in Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 382))

Abstract

It is known that the inf-convolution (or epigraphical sum)

$$ (f\mathop + \limits_e g)(x) = \inf \{ f(u) + g(x - u):u \in X\} $$

of convex proper lower semicontinuous functions defined on a normed linear space is continuous, under some assumptions, with respect to the usual variational convergences (Mosco convergence in the reflexive case, bounded Hausdorff topology in the general case). The deconvolution (or epigraphical difference) defined by

$$ (k\mathop {{\text{ }} - }\limits_e g)(x) = \sup \{ k(x + u) - g(u):g(u) < + \infty \} $$

is the smallest solution, when it exists, of the equation \( \xi \mathop {{\text{ }} + }\limits_e g = k \). In this paper we present continuity results on the mappings \( k \mapsto k\mathop {{\text{ }} - }\limits_e g \) and \( g \mapsto k\mathop {{\text{ }} - }\limits_e g \) with respect to the quoted topologies and to some intermediate topologies lying between Mosco and bounded Hausdorff topologies. Applications are given to continuity of the parallel subtraction of operators in Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W.N. Anderson, R.J. Duffin, Series and parallel addition of matrices. J. Math. Anal. Appl., 26, (1969), 576–594.

    Article  Google Scholar 

  2. H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, 129, Pitman, Boston, London, 1984.

    Google Scholar 

  3. H. Attouch, D. Azé and G. Beer, On some inverse problems for the epigraphical sum, Nonlinear Analysis, Theory Methods Appl., 16, (1991), 241–254.

    Article  Google Scholar 

  4. H. Attouch, R. Lucchetti and R.J.B. Wets, The topology of the p-Hausdorff distance, to appear, Ann. Mat. Pura Appl., IV. Ser.

    Google Scholar 

  5. H. Attouch, J.L. N’Doutoumé and M. Théra, Epigraphical convergence of functions and convergence of their derivatives in Banach spaces, Semin. Anal. Convexe, Univ. Sci. Tech. Languedoc, no 9, (1990).

    Google Scholar 

  6. H. Attouch, C. Sbordone, Asymptotic limits for perturbed functionals of calculus of variations, Ric. Mat., 29, (1980), 85–124.

    Google Scholar 

  7. H. Attouch, R.J.B. Wets, Lipschitzian stability of the ε-approximate solutions in convex optitimization, IIASA working paper WP 87–25, Laxenburg, Austria, 1987.

    Google Scholar 

  8. H. Attouch, R.J.B. Wets, Epigraphical analysis, analyse non linéaire, eds. H. Attouch, J.-P. Aubin, F. Clarke, I. Ekeland, 73–100, Gauthier-Villars, Paris, 1989.

    Google Scholar 

  9. H. Attouch, R.J.B. Wets, Quantitative stability of variational systems: I. The epigraphical distance, IIASA working paper WP 88–98 Laxenburg, Austria, 1988.

    Google Scholar 

  10. H. Attouch, R.J.B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditioning, IIASA working paper WP 88–9, Laxenburg, Austria, 1988.

    Google Scholar 

  11. D. Azé, On some metric aspects of set convergence, Preprint, University of Perpignan, 1988.

    Google Scholar 

  12. D. Azé, J.-P. Penot, Operations on convergent families of sets and functions, Optimization, 21, (1990), 521–534.

    Article  Google Scholar 

  13. G. Beer, On the Young-Fenchel transform for convex functions, Proc. Am. Math. Soc., 104, (1988), 1115–1123.

    Article  Google Scholar 

  14. G. Beer, Convergence of linear functionals and their level sets, Arch. Math., 52, (1989), 482–491.

    Article  Google Scholar 

  15. G. Beer, Conjugate convex functions and the epi-distance topology, Proc. Am. Math. Soc, 108, (1990), 117–126.

    Article  Google Scholar 

  16. G. Beer, R. Lucchetti, Convex optimization and the epi-distance topology, to appear Trans. Am. Math. Soc.

    Google Scholar 

  17. L. Contesse, J.-P. Penot, Continuity of the Fenchel correspondence, to appear, J. Math. Anal. Appl.

    Google Scholar 

  18. E. De Giorgi-T. Franzoni, Su un tipo di convergenza varia-zionale, Atti Acad. Naz. Lincei, VIII.Ser., Rend., Cl. Sci. Fis. Mat. Nat., 58, (1975), 842–850.

    Google Scholar 

  19. S. Dolecki, Continuity of bilinear and non bilinear polarities, International School of Mathematics G. Stampacchia, Erice 1984, R. Conti, E. De Giorgi, F. Giannessi eds., Springer Verlag 1986.

    Google Scholar 

  20. J.-B. Hiriart-Urruty, Lipschitz r-continuity of the approximate subdifferential of a convex function, Math. Scand., 47 (1980), 123–134.

    Google Scholar 

  21. J.-B. Hiriart-Urruty, A general formula on the conjugate of the difference of functions, Can. Math. Bull., 29 (1986), 482–485.

    Article  Google Scholar 

  22. J.-B. Hiriart-Urruty, M.-L. Mazure, Formulation variationeile de l’addition parallèle et de la soustraction parallèle d’opérateurs semi définis positifs, CR. Acad. Sci., Paris, Ser. I, t. 302, no 15 (1986), 527–530.

    Google Scholar 

  23. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

    Book  Google Scholar 

  24. C. Kuratowski, Topologie, Warsaw, 1958.

    Google Scholar 

  25. P.-J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972.

    Google Scholar 

  26. M.-L. Mazure, Analyse variationnelle des formes quadratiques convexes, Thèse, Université Paul Sabatier, Toulouse, 1986.

    Google Scholar 

  27. M.-L. Mazure, M. Voile, Equations inf-convolutives et conjugaison de Moreau-Fenchel, to appear, Ann. Fac. Sci. Toulouse, V. Sér., Math.

    Google Scholar 

  28. J.-J. Moreau, Fonctionnelles convexes, lecture Notes Collège de France, Paris, 1966.

    Google Scholar 

  29. U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3, (1969), 510–585.

    Article  Google Scholar 

  30. U. Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl., 45, (1974), 533–555.

    Article  Google Scholar 

  31. J.-P. Penot, Preservation of persistence and stability under intersections and operations, preprint, University of Pau, 1986.

    Google Scholar 

  32. J.-P. Penot, The cosmic Hausdorff topology; the bounded Hausdorff topology and continuity of polarities, to appear Proc. Am. Math. Soc.

    Google Scholar 

  33. J.-P. Penot, On the convergence of subdifferential of convex functions, preprint, University of Pau, 1991.

    Google Scholar 

  34. H. Rådström, An imbedding theorem for spaces of convex sets, Proc. Am. Math. Soc. 3, (1952), 165–169.

    Article  Google Scholar 

  35. S.M. Robinson, Stability theorems for systems of inequalities, part. II: differentiable nonlinear systems, SIAM J. Numer. Anal., 13, (1976), 497–513.

    Article  Google Scholar 

  36. G. Salinetti, R.J.B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Review 21, (1979), 18–33.

    Article  Google Scholar 

  37. A. Seeger, Direct and inverse addition in convex analysis and applications, J. Math. Anal. Appl, 148, (1990), 317–349.

    Article  Google Scholar 

  38. P. Shunmugaraj, D.V. Pai, On approximate solutions of minimization problems, to appear.

    Google Scholar 

  39. M. Voile, Equations inf-convolutives, Séminaire d’analyse numérique, Université Paul Sabatier, Toulouse, 1988.

    Google Scholar 

  40. M. Voile, Concave duality: application to problems dealing with differences of functions, Math. Program., 41, (1988), 261–278.

    Article  Google Scholar 

  41. D. Walkup, R.J.B. Wets, Continuity of some cone convex-valued mappings, Proc. Am. Math. Soc, 18, (1967), 229–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azé, D., Volle, M. (1992). Various Continuity Properties of the Deconvolution (or Epigraphical Difference). In: Oettli, W., Pallaschke, D. (eds) Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51682-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51682-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55446-2

  • Online ISBN: 978-3-642-51682-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics