Skip to main content

Stability of Stationary Solutions in Semi-Infinite Optimization via the Reduction Approach

  • Conference paper
Advances in Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 382))

Abstract

The purpose of the paper is to characterize local minimizers of semi-infinite optimization problems as stable or strongly stable stationary solutions when a parameter appears in the objective function. By using the reduction approach, a special parametric nonsmooth optimization problem comes into consideration. We present stability results for this nonsmooth program and apply them to the initial problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bank, B., J. Guddat, D. Klatte, B. Kummer, K. Tammer: Non-Linear Parametric Optimization. Akademie-Verlag, Berlin, 1982.

    Google Scholar 

  2. Ben-Tal, A., M. Teboulle, J. Zowe: Second-order necessary optimality conditions for semi-infinite optimization problems. In: R. Hettich, ed., Semi-Infinite Programming, Springer, Berlin-Heidelberg-New York, 1979.

    Google Scholar 

  3. Chaney, R.W.: Optimality conditions for piecewise C2 nonlinear programming. J. Optim. Theory Appl. 61 (1989) 179–202.

    Article  Google Scholar 

  4. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York, 1983.

    Google Scholar 

  5. Darkhovskij, B.S. and E.S. Levitin: Quadratic optimality conditions for problems of semi-infinite mathematical programming. Trans. Moscow Math. Soc. 48 (1986) 175–225.

    Google Scholar 

  6. Dontchev, A. and H. Th. Jongen: On the regularity of the Kuhn-Tucker curve. SIAM J. Control Optim. 24 (1986) 169–176.

    Article  Google Scholar 

  7. Hettich, R.: On second order sufficiency conditions for semi-infinite optimization. 22. Jahrestagung “Mathematische Optimierung” Sellin 1990, Humboldt-Universität, Sektion Mathematik, Berlin, pp. 33–34.

    Google Scholar 

  8. Hettich, R. and G. Still: Semi-infinite programming models in robotics. In: J. Guddat, H.Th. Jongen, B. Kummer, F. Nozicka, eds., Parametric Optimization and Related Topics II, Akademie-Verlag, Berlin, 1991.

    Google Scholar 

  9. Hettich, R. and P. Zencke: Numerische Methoden der Approximation und semi-infiniten Optimierung, B.G. Teubner, Stuttgart, 1982.

    Google Scholar 

  10. Hiriart-Urruty, J.-B., J.J. Strodiot, V. Hien Nguyen: Generalized Hessian matrix and second order optimality conditions for problems with C 1,1 — data. Appl. Math. Optim. 11 (1984) 43–56.

    Article  Google Scholar 

  11. Ioffe, A.D.: Second order conditions in nonlinear nonsmooth problems of semi-infinite programming. In: A.V. Fiacco and K.O. Kortanek, eds., Semi-Infinite Programming and Applications, Springer, 1983.

    Google Scholar 

  12. Ioffe, A.D.: Variational analysis of a composite function: A formula for the lower second order epi-derivative. J. Math. Anal. Appl. 160 (1991), to appear.

    Google Scholar 

  13. Jittorntrum, K.: Solution point differentiability without strict complementarity in nonlinear programming. Math. Progr. Study 21 (1984) 127–138.

    Article  Google Scholar 

  14. Jongen, H.Th., F. Twilt, G.W. Weber: Semi-infinite optimization: Structure and stability of the feasible set. Memorandum No. 838, University of Twente, Faculty of Applied Mathematics, Enschede, 1989.

    Google Scholar 

  15. Jongen, H. Th., W. Wetterling, G. Zwier: On sufficient conditions for local optimality in semi-infinite programming. optimization 18 (1987) 165–178.

    Google Scholar 

  16. Kawasaki, H.: Second order necessary optimality conditions for minimizing a sup-type function. Math. Progr. 49 (1991) 213–229.

    Article  Google Scholar 

  17. Klatte, D.: Strong stability of stationary solutions and iterated local minimization. In: J. Guddat, H. Th. Jongen, B. Kummer, F. Nozicka, eds., Parametric Optimization and Related Topics II, Akademie-Verlag, Berlin, 1991.

    Google Scholar 

  18. Klatte, D.: Nonlinear optimization problems under data perturbations. In: W. Krabs, J. Zowe: Sommerschule “Moderne Methoden der Optimierung” Thurnau 1990, Springer, to appear.

    Google Scholar 

  19. Klatte, D., B. Kummer, R. Walzebok: Conditions for optimality and strong stability in nonlinear programs without assuming twice differentiability of data. Working Paper WP-89–089, IIASA, Laxenburg/A, 1989.

    Google Scholar 

  20. Klatte, D. and K. Tammer: On second-order sufficient optimality conditions for C 1,1 optimization problems. optimization 19 (1988) 169–179.

    Google Scholar 

  21. Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: S.M. Robinson, ed., Analysis and Computation of Fixed Points. Academic Press, New York, 1980.

    Google Scholar 

  22. Kummer, B.: Newton’s method for non-differentiable functions. In: J. Guddat et al., eds., Advances in Mathematical Optimization. Akademie-Verlag, Berlin, 1988.

    Google Scholar 

  23. Kummer, B.: An implicit-function theorem for C 0,1 equations and parametric C 1,1 — optimization. J. Math. Anal. Appl. 158 (1991) 35–46.

    Article  Google Scholar 

  24. Robinson, S.M.: Generalized equations and their solutions, Part II: Applications to nonlinear programming. Math. Progr. Study 19 (1982) 200–221.

    Article  Google Scholar 

  25. Rockafellar, R.T.: First and second order epi-differentiability in nonlinear programming. Trans. Amer. Math. Soc. 307 (1988) 75–108.

    Article  Google Scholar 

  26. Shapiro, A.: Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs. Math. Ops. Res. 10 (1985) 207–219.

    Article  Google Scholar 

  27. Wetterling, W.: Definitheitsbedingungen für relative Extrema bei Op-timierungs- und Approximationsaufgaben. Numer. Math. 15 (1970) 122–136.

    Article  Google Scholar 

  28. Zwier, G.: Structural analysis in semi-infinite programming, University of Twente, Dissertation, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klatte, D. (1992). Stability of Stationary Solutions in Semi-Infinite Optimization via the Reduction Approach. In: Oettli, W., Pallaschke, D. (eds) Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51682-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51682-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55446-2

  • Online ISBN: 978-3-642-51682-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics