Skip to main content

Continuity of Movement and Preservation of Architecture during Cell Locomotion

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

Abstract

Continuous fluxes of cytoplasm and membrane material are required to sustain cell locomotion. In some examples, e. g. epidermal cells of various vertebrates very small changes in the overall morphology of the cells take place during locomotion, in others e. g. fibroblasts or lymphocytes, at least the general appearance remains unaltered. Thus any model on cell locomotion has to include the continuous organization and disorganization of cell architecture under steady state conditions. Such a model is presented, based on intracellular pressure differences providing the source for the motive force and on the distribution of cytoskeletal elements providing the structural basis for force generation and cell shape. A detailed description of very small changes in cell surface topography presents the basis on which the models of cell locomotion and the control of this event can be discussed appropriately. Cytosolic calcium controls force generation and the direction of locomotion. Ca2+ concentration is highest in the lamella/cell body transition region and at the leading front, as has been revealed by scanning fluorometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bereiter-Hahn J. (1967): Dissoziation und Reaggregation von Epidermiszellen der Larven von Xenopus laevis (Daudin) in vitro. Z.Zellf. 79: 118–156

    Article  Google Scholar 

  • Bereiter-Hahn J., Strohmeier R., Beck K. (1983): Determination of the thickness profile of cells with the reflection contrast microscope. Scient. Techn. Inf. VIII: 125–150

    Google Scholar 

  • Bretscher M.S. (1988): Fibroblasts on the move. J. Cell Biol. 106: 235–237

    Article  Google Scholar 

  • Brown R.M., Middleton C.A. (1985): Morphology and locomotion of individual epithelial cells in culture. J. Cell Sci. 78: 105–115

    Google Scholar 

  • Condeelis J., Hall A., Bresnick A., Warren V., Hock R., Bennett H., Ogihara S. (1988): Actin polymerization and pseudopod extension during amoeboid Chemotaxis. Cell Motil. Cytoskel. 10: 77–90

    Article  Google Scholar 

  • Cooper M.S., Schliwa M. (1985): Electrical and ionic controls of tissue cell locomotion in DC electric fields. J. Neuroscience Res. 13: 223–244

    Article  Google Scholar 

  • Dembo M., Maltrud M., Harlow F. (1986): Numerical studies of unreactive contractile networks. Biophys. J. 50: 123–137

    Article  Google Scholar 

  • DiPasquale A. (1975): Locomotory activity of ephithelial cells in culture. Exp. Cell Res. 94: 191–215

    Article  Google Scholar 

  • Gingell D. (1981): The interpretation of interference reflexion images of spread cells: Significant contributions from thin peripheral cytoplasm. J. Cell Sci. 49: 237–247

    Google Scholar 

  • Gingell D., Todd I. (1979): Interference reflection microscopy: a quantitative theory for image inter pretation and its application to cell-substratum separation measurement. Biophys. J. 26: 507–52

    Article  Google Scholar 

  • Hall A.L., Schlein A., Condeelis J. (1988): Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in amoeboid cells. J. Cell. Biochem. 37: 285–299

    Article  Google Scholar 

  • Harris A.K. (1973): Cell surface movements related to cell locomotion. In: Ciba Found.Symp. Locomotion of Tissue Cells. pp.3–26, Elsevier North-Holland.

    Google Scholar 

  • Huxley H.E. (1976): Introductory remarks: The relevance of studies on muscle to problems of cell motility. In: R. Goldman, T. Pollard, J. Rosenbaum (eds.) Cell Motility, Book A, Motility, of muscle and non-muscle cells. pp.115–126, Cold Spring Harbor Conf. on Cell Prolif. Vol 3

    Google Scholar 

  • Höner B., Citi S., Kendrick-Jones J., Jockusch B.M. (1988): Modulation of cellular morphology and locomotory activity by antibodies against myosin. J. Cell Biol. 107: 2181–2189

    Article  Google Scholar 

  • Höner B., Jockusch B.M. (1988): Stress fiber dynamics as probed by antibodies against myosin. Europ. J. Cell Biol. 47: 14–21

    Google Scholar 

  • Komnick H., Stockem W., Wohlfarth-Bottermann K.E. (1972): Ursachen, Begleitphänomene und Steuerung zellulärer Bewegungserscheinungen. Fortschritte d. Zoologie 21: 3–60

    Google Scholar 

  • Kukulies J., Brix K., Stockem W. (1985): Fluorescent analog cytochemistry of the actin system and cell surface morphology in Physarum microplasmodia. Europ.J. Cell Biol. 39: 62–69

    Google Scholar 

  • Kupfer A., Kronebusch P.J., Rose J.K., Singer S.J. (1987): A critical role for the polarization of membrane recycling in cell motility. Cell Motility and Cytoskeleton 8: 182–189

    Article  Google Scholar 

  • Lückhoff A. (1986): Measuring cytosolic free calcium concentration in endothelial cells with Indo-1: The pitfall of using the ratio of two fluorescence in tensities recorded at different wavelengths. Cell Calcium 7: 233–248

    Article  Google Scholar 

  • Mittal A.K., Bereiter-Hahn J. (1985): Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx. Cell Motility 5: 123–136

    Article  Google Scholar 

  • Mela L. (1968): Interaction of La3+ and local anesthetic drugs with mitochondrial Ca2+ and Mn2+ uptake. Arch Biochem. Biophys. 123: 286–293

    Google Scholar 

  • Moore L., Pastan J. (1979): A calcium requirement for movement of cultured cells. J. Cell Physiol. 101: 101–108

    Article  Google Scholar 

  • Nieuwkoop P.D., Faber J. (1956): Normal tables of Xenopus laevis (DAUDIN) North Holland Publ.Amsterdam

    Google Scholar 

  • Oster G.F. (1984): On the crawling of cells. J. Embryol. Exp. Morphol. 83: 329–364

    Google Scholar 

  • Oster G.F., Odell G.M. (1984): The mechanochemistry of cytogels. Physica 12D: 333–350

    MathSciNet  Google Scholar 

  • Pollard T.D. (1977): Cytoplasmic contractile proteins. In: B.R. Brinkley, K.R. Porter (ed.) International Cell Biology 1976–1977 pp.378–387

    Google Scholar 

  • Rees D.A., Couchman J.R., Smith C.G., Woods A., Wilson G. (1982): Cell substratum interactions in the adhesion and locomotion of fibroblasts. Phil.Trans. R. Soc. Lond. B299: 169–176

    Google Scholar 

  • Svitkina T., Neyfakh, A.A. jr., Bershadsky A. (1986): Actin cytoskeleton of spread fibroblasts appears to assemble at the cell edges. J. Cell Sci. 82: 235–248

    Google Scholar 

  • Taylor D.L., Condeelis J.S., Moore P.L., Allen R.D. (1973): The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J. Cell Biology 59: 378–394

    Article  Google Scholar 

  • Taylor D.L., Fechheimer M. (1982): Cytoplasmic structure and contractility: the solation-contraction coupling hypothesis. Philos. Trans. R. Soc. Lond. (Biol.) 299: 185–197

    Article  Google Scholar 

  • Taylor D.L., Moore P.L., Condeelis J.S., Allen R.D. (1976): The mechanochemical basis of amoeboid movement. I. Ionic Re-quirments for maintaining viscoeleasticity and contractility of amoeba cytoplasm. Exp. Cell Res. 101: 127–133

    Article  Google Scholar 

  • Tilney L.G. (1980): Polymerization of actin. V. A new organelle, the actomere, that initiates the assembly of actin filaments in Thyone sperm. J. Cell Biol. 77: 551–564

    Google Scholar 

  • Wilkinson P.C. (1975): Leucocyte locomotion and Chemotaxis. The influence of divalent cations and cation ionophores. Exp. Cell Res. 93: 420–426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bereiter-Hahn, J., Braun, N., Vöth, M. (1990). Continuity of Movement and Preservation of Architecture during Cell Locomotion. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics