Skip to main content

Abstract

Cilia or “little feet”, as they were originally described, were first discovered by the Dutch light microscopist Antoni van Leeuwenhoek in 1675. However, only in the last 20 years has an understanding of ciliary structure and function been approached. The recent development of a number of experimental techniques, particularly TEM, has enabled these complex organelles to be examined in detail. With this understanding, it is evident that the differentiation between eukaryotic cilia and flagella is not rigorous. Flagella are, in many respects, simply long cilia; both their structure and mechanisms of motility are almost identical. To avoid repetitive discussion, this chapter will concentrate on cilia, but in most situations, this information also applies to flagella. This assumption does not extend to prokaryotic flagella; these are very different in structure and function and should not be confused.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzelius BA (1959) Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol 5:51–54

    Article  Google Scholar 

  • Afzelius BA (1979) The immotile ciliary syndrome and other ciliary diseases. Int Rev Exp Pathol 19:1–43

    PubMed  CAS  Google Scholar 

  • Aiello E (1974) The control of ciliary activity in metazoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, p 353–376

    Google Scholar 

  • Aiello E, Sleigh MA (1972) The metachronal wave of lateral cilia of Mytilus edulis. J Cell Biol 54:493–506

    Article  PubMed  CAS  Google Scholar 

  • Allen C, Borisy GC (1974) Structural polarity and directional growth of microtubules in Chlamydomonas flagella. J Mol Biol 90:381–402

    Article  PubMed  CAS  Google Scholar 

  • Atkins D (1938) On the ciliary mechanisms and interrelationship of lamellibranchs. Q J Microsc 80:331–437

    Google Scholar 

  • Anderson RGW (1972) The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 54:246–265

    Article  PubMed  CAS  Google Scholar 

  • Baba SA, Hiramota Y (1970) A quantitative analysis of ciliary movement by means of high speed microcinematography. J Exp Biol 52:675–690

    Google Scholar 

  • Bardele CF (1978) Preliminary survey of the occurrence of ciliary patches in ciliates. J Protozool [Suppl]25:27A(abstr 77)

    Google Scholar 

  • Bradfield JGR (1955) Fibre patterns in animal flagella and cilia. Soc Exp Biol 9:306–334

    Google Scholar 

  • Brokaw CJ (1965) Non-sinusoidal bending waves of sperm flagella. J Exp Biol 43:155–169

    PubMed  CAS  Google Scholar 

  • Carriker MR (1946) Observations on the functioning of the alimentary system of the snail Lymnaea stagnalis. Biol Bull 91:88–111

    Article  PubMed  CAS  Google Scholar 

  • Dentier WL (1981) Microtubule-membrane interactions in cilia and flagella. Int Rev Cytol 72:1–47

    Article  Google Scholar 

  • Dirksen ER (1982) Ciliary basal body morphogenesis: The early events. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. Soc Exp Biol Symp XXXV. Univ Press, Cambridge, p 439–463

    Google Scholar 

  • Dirksen ER, Satir P (1972) Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell 4:389–404

    Article  PubMed  CAS  Google Scholar 

  • Dirksen ER, Zeira M (1981) Microtubule sliding in the cilia of the rabbit trachea and oviduct. Cell Motil 1:247–260

    Article  PubMed  CAS  Google Scholar 

  • Dral ADG (1967) The movements of the laterofrontal cilia and the mechanism of particle retention in the mussel (Mytilus edulis). Neth J Sea Res 3:391–422

    Article  Google Scholar 

  • Dute R, Kung C (1978) Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J Cell Biol 78:451–464

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW, Porter KR (1954) A study of the fine structure of ciliated epithelium. J Morphol 94:221–281

    Article  Google Scholar 

  • Gaber DL, Kopf GS (1980) The regulation of spermatozoa by calcium and cyclic nucleotides. Adv Cyclic Nucleotide Res 13:251–306

    Google Scholar 

  • Gibbons BH, Gibbons IR (1972) Flagellar movement and adenosine triphosphate activity in sea urchin sperm extracted with Triton X-100. J Cell Biol 54:75–97

    Article  PubMed  CAS  Google Scholar 

  • Gibbons BH, Gibbons IR (1973) The effect of partial extraction of dynein arms on the movement of reactivated sea urchin sperm. J Cell Sci 13:337–357

    PubMed  CAS  Google Scholar 

  • Gibbons BH, Gibbons IR (1974) Properties of flagellar “rigor waves” produced by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J Cell Biol 63:970–985

    Article  PubMed  CAS  Google Scholar 

  • Gibbons IR (1961) The relationship between fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol 11:179–205

    Article  PubMed  CAS  Google Scholar 

  • Gibbons IR (1963) Studies on the protein components of cilia from Tetrahymena pyriformis. Proc Natl Acad Sci USA 50:1002–1010

    Article  PubMed  CAS  Google Scholar 

  • Gibbons IR (1965) Chemical dissection of cilia. Arch Biol (Liège) 76:317–352

    CAS  Google Scholar 

  • Gibbons IR (1974) Mechanisms of flagellar motility. In: Afzelius BA (ed) Functional anatomy of the spermatozoa. Pergamon, Oxford, p 127–140

    Google Scholar 

  • Gibbons IR (1981) Cilia and flagella of eukaryotes. J Cell Biol [Suppl] 91:107s–124s

    CAS  Google Scholar 

  • Gibbons IR, Gibbons BH (1980) Transient flagellar waveforms during intermittent swimming in sea urchin sperm 1. Wave parameters. J Muscle Res Cell Mot 1:31–59

    Article  CAS  Google Scholar 

  • Gibbons IR, Grimestone AV (1960) On flagellar structure in certain flagellates. J Biophys Biochem Cytol 7:697–716

    Article  PubMed  CAS  Google Scholar 

  • Gilula NB, Satir P (1972) The ciliary necklace; a ciliary membrane specialization. J Cell Biol 53:494–509

    Article  PubMed  CAS  Google Scholar 

  • Gray J (1928) Ciliary movement. Univ Press, Cambridge

    Google Scholar 

  • Gray J (1955) The movement of sea urchin spermatozoa. J Exp Biol 32:775–801

    Google Scholar 

  • Hoffman-Berling H (1955) Geisselmodelle und adenosine triphosphate. Biochim Biophys Acta 16:146–154

    Article  Google Scholar 

  • Holwill ME, McGregor JL (1976) Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti. J Exp Biol 65:229–242

    PubMed  CAS  Google Scholar 

  • Jørgensen CB (1975) On gill function in the mussel Mytilus edulis. Ophelia 13:187–232

    Article  Google Scholar 

  • Jørgensen CB (1981) A hydrodynamic principle for particle retention in Mytilus edulis and other ciliary suspension feeders. Mar Biol 61:277–282

    Article  Google Scholar 

  • Knight-Jones EW (1954) Relations between metachronism and the direction of ciliary beat in metazoa. Q J Microsc Sci 95:503–521

    Google Scholar 

  • Kuhn C, Engleman W (1978) The structure of the tips of mammalian respiratory cilia. Cell Tissue Res 186:491–498

    Article  PubMed  Google Scholar 

  • Machemer H (1974) Ciliary activity and metachronism in protozoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, p 199–286

    Google Scholar 

  • Maihle N, Dedman JR, Means AR, Chafouleas JG, Satir BH (1981) Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia. J Cell Biol 89:695–699

    Article  PubMed  CAS  Google Scholar 

  • Means AR, Tash JS, Chafouleas JG (1982) Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells. Physiol Rev 62:1–35

    PubMed  CAS  Google Scholar 

  • Melkonian M (1982) The functional analysis of the flagellar apparatus in green algae. In: Amos WB, Duckett JG (eds) Soc Exp Biol Symp XXXV. Univ Press, Cambridge, p 589–606

    Google Scholar 

  • Naitoh Y, Eckert R (1974) The control of ciliary activity in protozoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, p 305–352

    Google Scholar 

  • Piperno G, Huang B, Luck DJL (1977) Two dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 74:1600–1604

    Article  PubMed  CAS  Google Scholar 

  • Piperno G, Huang B, Ramanis Z, Luck DJL (1981) Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components. J Cell Biol 88:73–79

    Article  PubMed  CAS  Google Scholar 

  • Pitelka DR (1974) Basal bodies and root structures. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, p 437–469

    Google Scholar 

  • Plattner H (1975) Ciliary granule plaques; membrane intercalated particle aggregates associated with Ca2+ binding sites in Paramecium. J Cell Sci 18:257–269

    PubMed  CAS  Google Scholar 

  • Reed W, Satir P (1980) Calmodulin in mussel gill epithelial cells; role in ciliary arrest. Ann NY Acad Sci 356:423–426

    Article  PubMed  CAS  Google Scholar 

  • Ringo DL (1967) Flagella motion and fine structure of the flagella apparatus in Chlamydomonas. J Cell Biol 33:543–571

    Article  PubMed  CAS  Google Scholar 

  • Roberts K, Hymans JS (eds) (1979) Microtubules. Academic Press, London New York, pp 595

    Google Scholar 

  • Sale WS, Gibbons IR (1979) Study of the mechanism of vanadate inhibition of the dynein cross bridge cycle in sea urchin sperm flagella. J Cell Biol 82:291–298

    Article  PubMed  CAS  Google Scholar 

  • Sale WS, Satir P (1977) Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci USA 74:2045–2049

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JL, Floyd GL (1978) Calcium-induced contraction of the rhizoplast of a quadriflagel-late green algae. Science 202:975–976

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JL, Surek B, Melkonian M (1983) Striated flagella roots: A calcium modulated contractile organelle. J Cell Biol (in press)

    Google Scholar 

  • Sanderson MJ, Sleigh MA (1981) The ciliary activity of cultured rabbit tracheal epithelium; beat pattern and metachrony. J Cell Sci 47:331–347

    PubMed  CAS  Google Scholar 

  • Sanderson MJ, Sleigh (1982) The function of respiratory tract cilia. In: Bonsignore G, Cumming G (eds) The lung in its environment. Plenum Press, New York, p 81–120

    Google Scholar 

  • Satir P (1961) Cilia. Sci Am 204:108–116

    CAS  Google Scholar 

  • Satir P (1963) Studies on cilia; the fixation of the metachronal wave. J Cell Biol 18:345–365

    Article  PubMed  CAS  Google Scholar 

  • Satir P (1965) Structure and function in cilia and flagella: facts and problems. Protoplasmatolo-gica III: 1–52

    Google Scholar 

  • Satir P (1967) Morphological aspects of ciliary motility. J Gen Physiol 50:241–258

    Article  PubMed  Google Scholar 

  • Satir P (1968) Studies on cilia III; Further studies on the cilium tip and a sliding filament model of ciliary motility. J Cell Biol 39:77–94

    Article  PubMed  CAS  Google Scholar 

  • Satir P (1975) Ionophore-mediated calcium entry induces mussel gill ciliary arrest. Science 190:586–588

    Article  PubMed  CAS  Google Scholar 

  • Satir P (1976) Local design of membranes in relation to cell function. 6th Eur Congr Electron Microsc, Jerusalem, p 41–47

    Google Scholar 

  • Satir P (1982) Mechanisms and control of microtubule sliding in cilia. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. Soc Exp Biol Symp XXXV. Univ Press, Cambridge, p 179–201

    Google Scholar 

  • Satir P, Ojakain GK (1979) Plant cilia. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology. New Ser, vol VII. Springer, Berlin Heidelberg New York, pp 224–249

    Google Scholar 

  • Satir P, Sale WS (1977) Tails of Tetrahymena. J Protozool 24:498–501

    PubMed  CAS  Google Scholar 

  • Satir B, Sale WS, Satir P (1976) Membrane renewal after dibucaine deciliation of Tetrahymena. Exp Cell Res 97:83–91

    Article  PubMed  CAS  Google Scholar 

  • Satir P, Wais-Stieder J, Lebduska S, Nasr A, Avolio J (1981) The mechanochemical cycle of the dynein arm. Cell Motil 1:303–332

    Article  PubMed  CAS  Google Scholar 

  • Sleigh MA (ed) (1974a) Cilia and flagella. Academic Press, London New York, pp 500

    Google Scholar 

  • Sleigh MA (1974b) Patterns of movement in cilia and flagella. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, p 79–92

    Google Scholar 

  • Sleigh MA (1974c) Metachronism of cilia of metazoa. In: Sleigh MA (ed) Cilia and flagella, Academic Press, London New York, p 287–304

    Google Scholar 

  • Sleigh MA, Barlow DI (1980) Metachronism and control of locomotion in animals with many propulsive structures. In: Elder HY, Trueman ER (eds) Aspects of animal movement. University Press, Cambridge, p 49–70

    Google Scholar 

  • Sleigh MA, Holwill MEJ (1969) Energetics of ciliary movement in Sabellaria and Mytilus. J Exp Biol 50:733–743

    PubMed  CAS  Google Scholar 

  • Sleigh MA, Jarman M (1973) Graded responses in ciliary activity of ctenophores compared with the “staircase” of cardiac muscle. J Mechanochem Cell Motil 2:61–68

    PubMed  CAS  Google Scholar 

  • Stephens RE (1975) The basal apparatus. J Cell Biol 64:408–420

    Article  PubMed  CAS  Google Scholar 

  • Stephens RE, Edds KT (1976) Microtubules: Structure chemistry and function. Physiol Rev 56:709–777

    PubMed  CAS  Google Scholar 

  • Stommel EW, Stephens ER, Masure HR, Head JF (1982) Specific localization of scallop gill epithelial calmodulin in cilia. J Cell Biol 92:622–628

    Article  PubMed  CAS  Google Scholar 

  • Sugino K, Naitoh Y (1982) Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295:609–611

    Article  Google Scholar 

  • Summers KE, Gibbons IR (1971) Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm. Proc Natl Acad Sci USA 68:3092–3096

    Article  PubMed  CAS  Google Scholar 

  • Summers KE, Gibbons IR (1973) Effects of trypsin digestion on flagellar structures and their relationship to motility. J Cell Biol 58:618–629

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K (1971) Abrupt stoppage of Mytilus cilia caused by chemical stimulation. J Fac Sci Univ (Tokyo) 12:219–228

    CAS  Google Scholar 

  • Takahashi M, Tonomura Y (1978) Binding 30S dynein with the B tubule of the outer doublets of axonemes from Tetrahymena pyriformis and adenosine triphosphate-induced dissociation of the complex. J Biochem (Tokyo) 84:1339–1355

    CAS  Google Scholar 

  • Verdugo P (1980) Ca++ dependent hormonal stimulation of ciliary activity. Nature 283:764–765

    Article  PubMed  CAS  Google Scholar 

  • Wais-Stieder J, Satir P (1979) Effects of vanadate on gill cilia; switching mechanism in ciliary beat. J Supramol Struct 11:339–347

    Article  Google Scholar 

  • Walter MF, Satir P (1979) Calcium does not inhibit active sliding of microtubules from mussel gill cilia. Nature 278:69–70

    Article  PubMed  CAS  Google Scholar 

  • Warner FD (1974) The fine structure of the ciliary and flagellar axoneme. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, p 11–38

    Google Scholar 

  • Warner FD, Mitchell DR (1978) Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J Cell Biol 76:261–277

    Article  PubMed  CAS  Google Scholar 

  • Warner FD, Satir P (1974) The structural basis of ciliary bend formation. J Cell Biol 63:35–63

    Article  PubMed  CAS  Google Scholar 

  • Yonge CM (1926) Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J Mar Biol Assoc UK 14:295–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanderson, M.J. (1984). Cilia. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51593-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51593-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51595-8

  • Online ISBN: 978-3-642-51593-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics