Skip to main content

Infrared Photochemistry of Gas Phase Ions

  • Chapter
Ion Cyclotron Resonance Spectrometry II

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 31))

Abstract

Experiments involving molecules which are truly isolated for time periods .exceeding several milliseconds require special techniques for particle storage at low pressure. In the case of charged species, crossed electric and magnetic fields can be used to restrain particle motion for time periods exceeding several hours, establishing conditions in the laboratory which exist in nature only in the interstellar medium. The phenomenon of ion cyclotron resonance provides a sensitive and selective means to detect charged particles stored in a magnetic field. At pressure below 10 torr stored ions are forced to maintain equilibrium with their environment by the absorption and emission of infrared radiation rather than in collisions with other molecules. Infrared lasers offer the possibility of upsetting this equilibrium by exposing molecules to an enormous photon flux at specific wavelengths. What fraction of the ion population will absorb infrared radiation at a specific wavelength? Can more than one photon be absorbed?

Contribution No. 6516

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.A. Lehman, M.M. Bursey, in “Ion Cyclotron Resonance Spectroscopy”, Wiley-Interscience: New York, 1976

    Google Scholar 

  2. J.L. Beauchamp, Ann. Rev. Phys. Chem. 22 (1971) 527.

    Article  CAS  Google Scholar 

  3. D.S. Bomse, R.L. Woodin, J.L. Beauchamp, J. Am. Chem. Soc. 101 (1979) 5503.

    Article  CAS  Google Scholar 

  4. R.L. Woodin, D.S. Bomse, J.L. Beauchamp, J. Am. Chem. Soc. 100 (1978) 3248.

    Article  CAS  Google Scholar 

  5. D.S. Bomse, R.L. Woodin, J.L. Beauchamp, in “Advances in Laser Chemistry” A.H. Zewail, Ed., Springer: Berlin, Heidelberg, New York, 1978, pp 362–373.

    Chapter  Google Scholar 

  6. R.L. Woodin, D.S. Bomse, J.L. Beauchamp, in “Chemical and Biochemical Applications of Lasers”, C.B. Moore, Ed., Academic Press: New York, 1979, Vol. IV, p 355.

    Google Scholar 

  7. R.L. Woodin, D.S. Bomse, J.L. Beauchamp, Chem. Phys. Lett. 63 (1979) 630.

    Article  CAS  Google Scholar 

  8. L.R. Thorne, J.L. Beauchamp, J. Chem. Phys. 74 (1981) 5100.

    Article  CAS  Google Scholar 

  9. D.S. Bomse, J.L. Beauchamp, J. Am. Chem. Soc. 103 (1981) 3292.

    Article  CAS  Google Scholar 

  10. D.S. Bomse, J.L. Beauchamp, Chem. Phys. Lett. 77 (1981) 25.

    Article  CAS  Google Scholar 

  11. C.A. Wight, J.L. Beauchamp, Chem. Phys. Lett. 77 (1981) 30.

    Article  CAS  Google Scholar 

  12. C.W. Tsang, A.G. Harrison, Org. Mass Spectrom. 3 (1970) 647.

    Article  CAS  Google Scholar 

  13. D.W. Berman, D.S. Bomse, J.L. Beauchamp, unpublished photoionization results.

    Google Scholar 

  14. J.L. Beauchamp, D. Holtz, S.D. Woodgate, S.L. Pratt, J. Am. Chem. Soc. 94 (1972) 2798.

    Article  Google Scholar 

  15. D.W. Berman, J.L. Beauchamp, L.R. Thorne, Int. J. Mass Spectrom. Ion Phys. 39 (1981) 47.

    Article  CAS  Google Scholar 

  16. D.W. Berman, J.L. Beauchamp, J. Phys. Chem. 84 (1980) 2233.

    Article  CAS  Google Scholar 

  17. K.R. Ryan, L.W. Sieck, J.H. Futrell, J. Chem. Pyhs. 41 (1964) 111

    Article  CAS  Google Scholar 

  18. L.W. Sieck, F.P. Abramson, J.H. Futrell, J. Chem. Phys. 45 (1966) 2859.

    Article  CAS  Google Scholar 

  19. E.P. Grimsurd, P.J. Kebarle, J. Am. Chem. Soc. 95 (1973) 7939.

    Article  Google Scholar 

  20. D.R. Ridge, J.L. Beauchamp, J. Am. Chem. Soc. 93 (1971) 5925.

    Article  CAS  Google Scholar 

  21. J.L. Beauchamp, R.C. Dunbar, J. Am. Chem. Soc. 92 (1970) 1477.

    Article  CAS  Google Scholar 

  22. J.L. Beauchamp, M.C. Caserío, J. Am. Chem. Soc. 94 (1972) 2638.

    Article  CAS  Google Scholar 

  23. J.L. Beauchamp, J. Am. Chem. Soc. 91 (1969) 5925

    Article  CAS  Google Scholar 

  24. J.L. Beauchamp, M.C. Caserio, T.B. McMahon, J. Am. Chem. Soc. 96 (1974) 6243.

    Article  CAS  Google Scholar 

  25. Much of the thermochamical data are obtained from appropriate proton affinity data, neutral heats of formation, and tabulated ion thermochemistry contained in J.R. Wolf, R.H. Staley, I. Koppel, M. Taagepara, R. T. Mclver, Jr., J.L. Beauchamp, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 5417.

    Article  CAS  Google Scholar 

  26. H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron, J. Phys. Chem. Ref. Data Suppl. 1 (1977) 6.

    Google Scholar 

  27. J.D. Cox, G. Pilcher in “Thermochemistry of Organic and Organometallic Compounds”, Academic Press, New York, 1970.

    Google Scholar 

  28. For some alcohols proton affinities are not experimentally attainable. Methods for estimating these numbers as well as experimentally determined ΔHf values for proton bound alcohol dimers are to be reported in another publication (D.S. Bomse, J.L. Beauchamp, J. Phys. Chem. 85 (1981) 488) .

    Article  CAS  Google Scholar 

  29. T.E. Orlowski, B.S. Freiser, J.L. Beauchamp, Chem. Phys. 16 (1976) 439.

    Article  CAS  Google Scholar 

  30. B.J.M. Neijzen, C.A. deLange, J. Elektron. Spectrom. 14 (1978) 187.

    Article  CAS  Google Scholar 

  31. J.W. Rabalais, R.J. Colton, J. Electron. Spectrom. 1 (1972/1973) 83.

    Article  Google Scholar 

  32. R.W. Ambartzumian, V.S. Tetokhov in “Chemical and Biochemical Applications of Lasers”. C.B. Moore, Ed., Academic Press: New York, 1977, Vol. III.

    Google Scholar 

  33. A. Hartford Jr., Chem. Phys. Lett. 53 (1978) 503.

    Article  CAS  Google Scholar 

  34. J.R. Nielsen, H.H. Claassen, D.C. Smith, J. Chem. Phys. 20 (1952) 1916.

    Article  CAS  Google Scholar 

  35. H. Wieser, W.G. Laidlaw, P.J. Krueger, H. Fuhrer, Spectrochim. Acta, 24A (1968) 1055.

    Google Scholar 

  36. J.L. Beauchamp, D. Holtz, S.D. Woodgate, S.L. Pratt, J. Am. Chem. Soc. 94 (1972) 2798.

    Article  CAS  Google Scholar 

  37. M.J. Coggiola, P.C. Crosby, J.R. Peterson, J. Chem. Phys. 72 (1980) 6507.

    Article  CAS  Google Scholar 

  38. L. Bass, T. Su, W.J. Chesnavich, M.T. Bowers, Chem. Phys. Lett. 34 (1975) 119.

    Article  CAS  Google Scholar 

  39. P. Kolodner, C.W. Winterfeld, E. Yablonovitch, Opt. Commun. 20 (1977) 119.

    Article  CAS  Google Scholar 

  40. D.M. Golden, M.J. Rossi, A.C. Baldwin, J.R. Barker, Ace. Chem. Res. 14 (1981) 56.

    Article  CAS  Google Scholar 

  41. P.A. Schulz, Aa.S. Sudbø, D.J. Krajnovich, H.S. Kurok, Y.R. Shen, Y.T. Lee, Ann. Rev. Phys. Chem. 30 (1979) 379.

    Article  CAS  Google Scholar 

  42. M.J. Quack, Chem. Phys. 69 (1978) 1294.

    Google Scholar 

  43. CD. Cantrell, S.M. Freund, J.L. Lyman in “Laser Handbook”, North Holland Publishing: Amsterdam, Vol. III, to appear.

    Google Scholar 

  44. S. Mukamel, J.J. Jortner, J. Chem. Phys. 65 (1976) 5204.

    Article  CAS  Google Scholar 

  45. N.R. Isenor, V. Merchant, R.S. Hallsworth, M.S. Richardson, Ca. J. Phys. 51 (1973) 1281.

    Article  CAS  Google Scholar 

  46. V.M. Akulin, S.S. Alimprev, N.V. Kalov, L.A. Shelepin, Zh. Eksp. Theor. Fiz. 69 (1975) 836 (Sov. Phys. JETP 42 (1975) 427) .

    CAS  Google Scholar 

  47. P.J. Robinson, K.A. Hollbrook in “Unimolecular Reactions”, Wiley: New York, 1972.

    Google Scholar 

  48. J.W. Ypenburg, J. Gerding, Rec. Trav. Chim. 90 (1971) 885

    Article  CAS  Google Scholar 

  49. J.W. Ypenburg, Rec. Trav. Chim. 91 (1972) 671.

    Article  CAS  Google Scholar 

  50. W.F. Edgell, C.E. May, J. Chem. Phys. 22 (1954 (1808) .

    Article  CAS  Google Scholar 

  51. J.G. Black, E. Yablonovitch, N. Bloembergen, S. Mukamel, Phys. Rev. Lett. 38 (1977) 1131.

    Article  CAS  Google Scholar 

  52. E.R. Grant, P.A. Schulz, Aa.S. Sudbtf, Y.R. Shen, Y.T. Lee, Phys. Rev. Lett. 40 (1978) 115.

    Article  CAS  Google Scholar 

  53. R.C Dunbar, Spectrochim. Acta 31A (1975) 797.

    CAS  Google Scholar 

  54. L. Allen, J.H. Eberly in “Optical Resonance and Two Level Atoms”, Wiley-Interscience: New York, 1975.

    Google Scholar 

  55. D.S. Frankel Jr., T. Manuccia, J. Chem. Phys. Lett. 54 (1978) 451.

    CAS  Google Scholar 

  56. J.T. Knudtson, G.W. Flynn, J. Chem. Phys. 58 (1973) 1467.

    Article  CAS  Google Scholar 

  57. G.P. Quigley in “Advances in Laser Chemistry”, A.H. Zewail, Ed., Springer Series in Chemical Physics, Springer: Berlin, Heidelberg, New York, 1978, and references contained therein.

    Google Scholar 

  58. J.C Polanyi, K.B. Woodall, J. Chem. Phys. 56 (1972) 1563.

    Article  CAS  Google Scholar 

  59. A.M.G. Ding, J.C. Polanyi, Chem. Phys. 10 (1975) 39.

    Article  CAS  Google Scholar 

  60. R.C Dunbar, Spectrochim. Acta 31A (1975) 797.

    CAS  Google Scholar 

  61. D.T. Gillespie, J. Comput. Phys. 22 (1976) 403

    Article  CAS  Google Scholar 

  62. D.T. Gillespie, J. Phys. Chem. 81 (1977) 2340.

    Article  CAS  Google Scholar 

  63. J.R. Barker, J. Chem. Phys. 72 (1980) 3686.

    Article  CAS  Google Scholar 

  64. R.L. Woodin, unpublished results.

    Google Scholar 

  65. Laser irradiation leads to an accelerated bimolecular reaction in addition to unimolecular decomposition reaction. See ref. 8.

    Google Scholar 

  66. D.H. Williams, Acc. Chem. Res. 10 (1977) 280.

    Article  CAS  Google Scholar 

  67. R.D. Bowen, D.H. Williams, J. Am. Chem. Soc. 102 (1980) 2752.

    Article  CAS  Google Scholar 

  68. D.H. Williams, I. Howe in “Principles of Organic Mass Spectrometry”, McGraw Hill: New York, 1972.

    Google Scholar 

  69. K. Levsen, J. Schwarz, Angew. Chem. 88 (1976) 589

    Article  CAS  Google Scholar 

  70. K. Levsen, J. Schwarz, Angew. Chem., Int. Ed. Engl. 15 (1976) 509.

    Article  Google Scholar 

  71. R.G. Cooks, J.H. Benyon, R.M. Caprioli, G.R. Lester in “Metastable Ions”, Elsevier: Amsterdam, 1973.

    Google Scholar 

  72. F.W. McLafferty, Ace. Chem. Res. 13 (1980) 33

    Article  CAS  Google Scholar 

  73. G.A. McClusky, R.W. Kondrat, R.G. Cooks, J. Am. Chem. Soc. 100 (1978) 6045.

    Article  CAS  Google Scholar 

  74. A.J. Collussi, S.W. Benson, R.S. Huang, Chem. Phys. Lett. 52 (1977) 349

    Article  Google Scholar 

  75. Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen, Y.T. Lee, J. Chem. Phys. 68 (1978) 1306.

    Article  Google Scholar 

  76. Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen, Y.T. Lee, J. Chem. Phys. 70 (1979) 912 and references contained therein.

    Article  Google Scholar 

  77. Reported results of high power pulsed infrared laser photolysis of trapped ions all indicate only one set of products formed. However, only a few systems have been studied to date: R.N. Rosenfeld, J.M. Jasinski,

    Google Scholar 

  78. J.I. Brauman, J. Am. Chem. Soc. 101 (1979) 3999

    Article  Google Scholar 

  79. R.N. Rosenfeld, J.M. Jasinski, J.I. Brauman, J. Chem. Phys. 71 (1979) 1030.

    Article  CAS  Google Scholar 

  80. F.J. Comes, S. Pionteck, Chem. Phys. Lett. 42 (1976) 558.

    Article  CAS  Google Scholar 

  81. P.B. Armentrout, D.W. Berman, J.L. Beauchamp, Chem. Phys. Lett. 53 (1978) 255.

    Article  CAS  Google Scholar 

  82. T.E. Orlowski, B.S. Freiser, J.L. Beauchamp, Chem. Phys. 16 (1976) 439.

    Article  CAS  Google Scholar 

  83. G. Varsanyi in “Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives”, Wiley: New York, 1974, p 73.

    Google Scholar 

  84. R.G. Bray, M.J. Berry, J. Chem. Phys. 71 (1979) 4909.

    Article  CAS  Google Scholar 

  85. R. Duperrex, J. van den Bergh, J. Chem. Phys. 73 (1980) 585.

    Article  CAS  Google Scholar 

  86. Reaction thermochemistry was compiled from: J.F. Wolf, R.H. Staley, I. Koppel, M. Taagepera, R.T. Mclver, J.L. Beauchamp, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 5417

    Article  CAS  Google Scholar 

  87. H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron, J. Phys. Chem. Ref. Data 1 (1977) 6.

    Google Scholar 

  88. J.D. Cox, G. Pilcher in “Thermochemistry of Organic and Organometallic Compounds”, Academic Press: New York, 1970

    Google Scholar 

  89. W.R. Davidson, J. Sunner, P. Kebarle, J. Am. Chem. Soc. 101 (1979) 1675.

    Article  CAS  Google Scholar 

  90. Cluster formation (CH3OH) n H+ (n = 1–8) , is observed using high pressure mass spectrometry with total neutral (methanol plus unreactive buffer) pressures of ≤5 Torr: E.P. Grimsrud, P. Kebarle, J. Am. Chem. Soc. 95 (1973) 7939.

    Article  CAS  Google Scholar 

  91. Excitation of neutral CH3OH does not contribute to the observed laser-induced chemistry because of the brief residence time of neutrals in the ion storage and irradiation region. This is discussed in detail elsewhere. Since both CH3OH and (CH3OH) 2H+ absorb in the 10-µm region, it might be expected that (CH3OH) H+ (OH2) also absorbs. However, no evidence is obtained for laser excitation enhancing the reverse of reaction 3 or for multiphoton dissociation of (CH3OH) H+ (OH2) to CH3OH2 + and H2O (25 kcal/ mol) . Both results suggest that (CH3OH) H (OH2) , in comparison with (CH3OH) 2H , is not heated significantly by the infrared laser. Based on the proposed kinetic scheme, heating might result in a slight decrease in k1, for reaction 1, which would be difficult to detect.

    Google Scholar 

  92. At the laser powers used, the typical rate for absorbing a single photon (103 s-1 for a transition with absorption cross section of 10-17 cm2) is very much slower than the decomposition rate (>107 s-1) of the intermediate. Thus the enhanced reaction rate is due to excitation of reactants, not to the intermediate.

    Google Scholar 

  93. C.A. Wight, J.L. Beauchamp, J. Am. Chem. Soc., submitted for publication.

    Google Scholar 

  94. C.A. Wight, J.L. Beauchamp, manuscript in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thorne, L.R., Wright, C.A., Beauchamp, J.L. (1982). Infrared Photochemistry of Gas Phase Ions. In: Ion Cyclotron Resonance Spectrometry II. Lecture Notes in Chemistry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50207-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50207-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11957-9

  • Online ISBN: 978-3-642-50207-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics