Skip to main content

Ecological Interactions in Patchy Environments: From Patch-Occupancy Models to Cellular Automata

  • Conference paper
Patch Dynamics

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 96))

Abstract

The ecological theory of species interactions rests largely on the competition and predatorprey models of Lotka, Volterra, Nicholson, and Gause (e.g., May 1973). These models neglect spatial structure in general, and patchiness in particular. In this paper we introduce cellular automata (CA) as a new class of models for population interactions in space. We will discuss the relations between CA models and the more familiar reaction-diffusion and patch-occupancy formulations, and compare the results of a simple CA competition model to the corresponding Markov chain patch-occupancy model. This comparison reveals some of the factors that determine when simple patch-occupancy models are successful approximations, and when spatially explicit CA models are more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Britten, N.F. 1986. Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, New York.

    Google Scholar 

  • Brokaw, N. 1982. The definition of a treefall gap and its effect on measures of forest dynamics. Biotropica 14:158–160.

    Article  Google Scholar 

  • Caswell, H. 1978. Predator-mediated coexistence: A nonequilibrium model. American Naturalist 112:127–154.

    Article  Google Scholar 

  • Caswell, H. and J. E. Cohen. 1991a. Communities in patchy environments: A model of disturbance, competition, and heterogeneity. In: J. Kolasa and S.T.A. Pickett (eds.). Ecological Heterogeneity. Springer-Verlag, New York, pp. 97–122.

    Chapter  Google Scholar 

  • Caswell, H. and J. E. Cohen. 1991b. Disturbance, interspecific interaction, and diversity in metapopulations. Biological Journal of the Linnean Society 42:193–218.

    Article  Google Scholar 

  • Caswell, H. and J. E. Cohen., 1992. Local and regional regulation of species-area relations: A patch-occupancy model. In R.E. Ricklefs and D. Schlüter (eds.). Community Diversity. University of Chicago Press (in press.)

    Google Scholar 

  • Cocho, G., R. Perez-Pascual and J.L. Rius. 1987a. Discrete systems, cell-cell interactions and color pattern of animals. I. Conflicting dynamics and pattern formation. Journal of Theoretical Biology 125:419–435.

    Article  PubMed  CAS  Google Scholar 

  • Cocho, G., R. Perez-Pascual, J.L. Rius and F. Soto. 1987b. Discrete systems, cell-cell interactions and color pattern of animals. II. Clonal theory and cellular automata. Journal of Theoretical Biology 125:419–435.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J.E. 1970. A Markov contingency-table model for rephcated Lotka-Volterra systems near equilibrium. American Naturalist 104:547–560.

    Article  Google Scholar 

  • Crowley, P.H. 1979. Predator-mediated coexistence: An equilibrium interpretation. Journal of Theoretical Biology 80:129–144.

    Article  PubMed  CAS  Google Scholar 

  • Crutchfield, J.P. and K. Kaneko. 1987. Phenomenology of spatio-temporal chaos. In B. Hao (ed.). Directions in Chaos. World Scientific, Singapore.

    Google Scholar 

  • Denslow, J.S. 1987. Tropical rainforest gaps and tree species diversity. Annual Review of Ecology and Systematics 18:431–451.

    Article  Google Scholar 

  • Durrett, R. 1988. Crabgrass, measles, and gypsy moths: An introduction to interacting particle systems. Mathematical Intelligencer 10:37–47.

    Article  Google Scholar 

  • Durrett, R. 1989. Lecture Notes on Particle Systems and Percolation. Wadsworth and Brooks/Cole, Pacific Grove, California.

    Google Scholar 

  • Fisher, R.A. 1937. The wave of advance of advantageous genes. Annals of Eugenics (London) 7:355–369.

    Article  Google Scholar 

  • Gardner, R.H. and R.V. O’Neill. 1991. Pattern, process, and predictability: The use of neutral models for landscape analysis. In: M.G. Turner and R.H. Gardner (eds.). Quantitative Methods in Landscape Ecology. Springer-Verlag, New York.

    Google Scholar 

  • Gilpin, M. and I. Hanski (eds.). 1991. Metapopulation Dynamics: Empirical and theoretical investigations. Academic Press, London.

    Google Scholar 

  • Grassberger, P. 1983. On the critical behavior of the general epidemic process and dynamical percolation. Mathematical Biosciences 63:157–172.

    Article  Google Scholar 

  • Griffeath, D. 1988. Cyclic random competition: A case history in experimental mathematics. Notices of the American Mathematical Society 35:1472–1480.

    Google Scholar 

  • Grimmett, G. 1989. Percolation. Springer-Verlag, New York.

    Google Scholar 

  • Gunji, Y. 1990. Pigment color patterns of molluscs as an autonomous process generated by asynchronous automata. Biosystems 23:317–334.

    Article  PubMed  CAS  Google Scholar 

  • Hanski, I. 1983. Coexistence of competitors in patchy environment. Ecology 64:493–500.

    Article  Google Scholar 

  • Hassell, M.P., H.N. Comins, and R.M. May. 1991. Spatial structure and chaos in insect population dynamics. Nature 353:255–258.

    Article  Google Scholar 

  • Hastings, A. 1977. Spatial heterogeneity and the stability of predator prey systems. Theoretical Population Biology 12:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, A. 1978. Spatial heterogeneity and the stability of predator-prey systems: Predatormediated coexistence. Theoretical Population Biology 14:380–395.

    Article  PubMed  CAS  Google Scholar 

  • Inghe, O. 1989. Genet and ramet survivorship under different mortality regimes—a cellular automata model. Journal of Theoretical Biology 138:257–270

    Article  Google Scholar 

  • Karlin, S. and J. McGregor. 1972. Polymorphisms for genetic and ecological systems with weak coupling. Theoretical Population Biology 3:210–238.

    Article  PubMed  CAS  Google Scholar 

  • Kierstead, H. and L.B. Slobodkin. 1953. The size of water masses containing plankton blooms. Journal of Marine Research 12:141–147.

    Google Scholar 

  • Korona, V.V. and L.V. Bystrykh. 1978. Clump formation in Festuca rubra (Poacea) as a growth process of cellular automata. Bot. Zh. (Leningrad) 63:1199–1202. (In Russian).

    Google Scholar 

  • Langton, C.G. 1990. Computationat the edge of chaos: Phase transitions and emergent computation. Physica D 42:12–37.

    Article  Google Scholar 

  • Levin, S.A. 1974. Dispersion and population interactions. American Naturalist 108:207–228.

    Article  Google Scholar 

  • Levins, R. 1970. Extinction, pp.77–107 in M. Gerstenhaber (ed.). Lectures on Mathematics in the Life Sciences, vol. 2. American Mathematical Society.

    Google Scholar 

  • Liggett, T.M. 1985. Interacting Particle Systems. Springer-Verlag, New York.

    Book  Google Scholar 

  • MacKay, G. N. Jan. 1984. Forest fires as critical phenomena. Journal of Physics A: Mathematical and General 17:L757-L760.

    Article  Google Scholar 

  • Markus, M. and B. Hess. 1990. Isotropic cellular automaton for modelling excitable media. Nature 347:56–58.

    Article  CAS  Google Scholar 

  • May, R.M. 1973. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.

    Google Scholar 

  • Milne, B. T. 1991. Lessons from applying fractal models to landscape patterns. In: M.G. Turner and R.H. Gardner (eds.). Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 199–235.

    Google Scholar 

  • Murray, J. 1989. Mathematical Biology. Springer-Verlag, New York.

    Google Scholar 

  • Okubo, A. 1980. Diffusion and Ecological Problems: Mathematical Problems. Springer-Verlag, New York.

    Google Scholar 

  • Othmer, H.G. and L.E. Scriven. 1971. Instability and dynamic pattern in cellular networks. Journal of Theoretical Biology 32:507–537.

    Article  PubMed  CAS  Google Scholar 

  • Othmer, H.G. and L.E. Scriven. 1974. Non-linear aspects of dynamic pattern in cellular networks. Journal of Theoretical Biology 43:83–112.

    Article  PubMed  CAS  Google Scholar 

  • Packard, N. and S. Wolfram. 1985. Two-dimensional cellular automata. Journal of Statistical Physics 38:901.

    Article  Google Scholar 

  • Paine, R. T. and S. A. Levin. 1981. Intertidal landscapes: Disturbance and the dynamics of pattern. Ecological Monographs 51:145–178.

    Article  Google Scholar 

  • Rosen, R. 1981. Pattern generation in networks. Progress in Theoretical Biology 6:161–209, Academic Press, New York.

    Google Scholar 

  • Runkle, J.R. 1985. Disturbance regimes in temperate forests, pp. 17–33 in S.T.A. Pickett and P.S. White (eds.). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York.

    Google Scholar 

  • Skellam, J.G. 1951. Random dispersal in theoretical populations. Biometrika 38:196–218.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. 1974. Competition and regional coexistence. Ecology 55:128–134.

    Article  Google Scholar 

  • Sole, R.V. and J. Vails. 1991. Order and chaos in a 2D Lotka-Volterra coupled map lattice. Physics Letters A 153:330–336.

    Article  Google Scholar 

  • Toffoli, T. and N. Margolus. 1987. Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge.

    Google Scholar 

  • Turing, A. M. 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B237:37–72.

    Article  CAS  Google Scholar 

  • Vandermeer, J.M. 1973. On the regional stabilization of locally unstable predator-prey relationships. Journal of Theoretical Biology 41:161–170.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, J.F.V. 1986. Cellular automata: A model for the formation of color patterns in molluscs. Journal of Molluscan Studies 52:97–105.

    Article  Google Scholar 

  • von Niessen, W. and A. Blumen. 1986. Dynamics of forest fires as a directed percolation model. Journal of Physics A: Mathematical and General 19:L289-L293.

    Article  Google Scholar 

  • Von Neumann, J. 1966. Theory of Self-Reproducing Automata. Univ. of Illinois Press.

    Google Scholar 

  • Wolfram, S. 1983. Statistical mechanics of cellular automata. Reviews of Modern Physics 55:601.

    Article  Google Scholar 

  • Wolfram, S. 1986. Theory and Application of Cellular Automata. World Scientific, Singapore.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caswell, H., Etter, R.J. (1993). Ecological Interactions in Patchy Environments: From Patch-Occupancy Models to Cellular Automata. In: Levin, S.A., Powell, T.M., Steele, J.W. (eds) Patch Dynamics. Lecture Notes in Biomathematics, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50155-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50155-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56525-3

  • Online ISBN: 978-3-642-50155-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics