Skip to main content

Satellite Transition Spectroscopy of Quadrupolar Nuclei

  • Conference paper
Solid-State NMR II

Part of the book series: NMR Basic Principles and Progress ((NMR,volume 31))

Abstract

Magic-angle sample spinning (MAS) has had a major impact on several aspects of the development of NMR and its application to solid state physics and chemistry. MAS was first used to average out dipolar broadening in 23Na NMR of monocrystalline sodium chloride, as published in 1958 by Andrew, Bradbury and Eades [1]. After that many more examples were published in the early days including applications to other nuclei such as 1H [2] and 31P [3]. However, successful applications of MAS required either a substantial motional narrowing in the case of strong homonuclear dipole broadening, or a dominant inhomogeneous line broadening interaction such as the chemical shift anisotropy.

During the last five years the availability of fast MAS probes lead to a major progress in high resolution NMR of quadrupolar nuclei. It is now possible to measure the quadrupole interaction of polycrystalline solids precisely using the satellite transitions. But furthermore, a considerable gain in spectral resolution especially for I = 5/2 and I = 9/2 nuclei is now available just by employing the ordinary MAS technique with single pulse excitation when observing the MAS lineshape of certain satellite transitions rather than the central transition MAS pattern. This gain in spectral resolution enables a tremendous progress for improved quantitative studies of disordered solids such as glasses and ceramics exhibiting distributions of the interaction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew ER, Bradbury A, Eades RG (1958) Nature 182: 1659

    CAS  Google Scholar 

  2. Andrew ER (1970) Nuclear magnetic resonance in rapidly rotating solids. In: Coogan CK, Ham NS, Stuart SN, Pilbrow JR, Wilson GHH (eds) Magnetic Resonance. Plenum, New York, and cited references therein

    Google Scholar 

  3. Schnabel B (1965) Exp. Techn. Phys. XIII: 289

    Google Scholar 

  4. Andrew ER, Bradbury A, Eades RG, Jenks GJ (1960) Nature 188: 1096

    CAS  Google Scholar 

  5. Gerstein BC, Dybowski CR (1985) Transient techniques in NMR of solids. Academic New York

    Google Scholar 

  6. Haeberlen U (1976) High resolution NMR in solids: Selective Averaging. Academic, New York

    Google Scholar 

  7. Burum D, Rhim WK (1979) J. Chem. Phys. 71: 944

    CAS  Google Scholar 

  8. Scheler G, Haubenreißer U, Rosenberger H (1981) J. Magn. Reson. 44: 134

    CAS  Google Scholar 

  9. Cohen MH, Reif F (1957) Solid State Physics 5: 321

    CAS  Google Scholar 

  10. Slichter CP (1989) Principles of magnetic resonance. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Engelhard G, Michel D (1987) High resolution solid state NMR of silicates and zeolites, Wiley, Chichester

    Google Scholar 

  12. Behrens HJ, B. Schnabel (1982) Physica B114: 185

    Google Scholar 

  13. Samoson A, Kundla E, Lippmaa E (1982) J. Magn. Reson. 49: 350

    CAS  Google Scholar 

  14. Ganapathy S, Schramm S, Oldfield E (1982) J. Chem. Phys. 77: 4360

    CAS  Google Scholar 

  15. Müller D, Gessner W, Behrens HJ, Scheler G (1981) Chem. Phys. Lett 79: 59

    Google Scholar 

  16. Müller D, Berger G, Grunze I, Ladwig G, Hailas E, Haubenreißer U (1983) Phys. Chem. Glasses 24: 37

    Google Scholar 

  17. Engelhard G, Nofz M, Forkel K, Wihsmann FG, Mägi M, Lippmaa E (1985) Phys. Chem. Glasses 26: 157

    Google Scholar 

  18. Samoson A, Lippmaa E, Pines A (1988) Mol. Phys. 65: 1013

    CAS  Google Scholar 

  19. Llor A, Virlet J (1988) Chem. Phys. Lett. 152: 248

    CAS  Google Scholar 

  20. Chmelka BF, Mueller KT, Pines A, Stebbins J, Wu Y, Zwanziger JW (1989) Nature 339: 42

    CAS  Google Scholar 

  21. Bruker Almanach (1990)

    Google Scholar 

  22. Klinowski J (1991) Chem. Rev. 91: 1459

    CAS  Google Scholar 

  23. Fyfe CA, Feng Y, Grondey H, Kokotailo GT, Gies H (1991) Chem. Rev. 91: 1525

    CAS  Google Scholar 

  24. Eckert H (1992) Progr. Nucl. Magn. Reson. Spectrosc. 24: 159

    CAS  Google Scholar 

  25. Akitt JW (1989) Progr. Nucl. Magn. Reson. Spectrosc. 21: 1

    Google Scholar 

  26. Dye JL, Ellaboudy AS, Kim J (1991) Solid state NMR of quadrupolar nuclei. In: Popov AI, Hallenga K (eds) Practical Spectroscopy Series, vol 11, Marcel Dekker, New York

    Google Scholar 

  27. Freude D, Haase J (1993) Quadrupole effects in solid state NMR, Heidelberg New York NMR—Basic Principles and Progress, vol 29. Springer, Berlin

    Google Scholar 

  28. Dec SF, Maciel GE (1990) J. Magn. Reson. 87: 153

    CAS  Google Scholar 

  29. Haase J, Oldfield E, Schmitt K (1992) Chem. Phys. Lett. 193: 274

    CAS  Google Scholar 

  30. Bunker BC, Tallant DR, Kirkpatrick RJ, Turner GL (1990) Phys. Chem. Glasses 31: 30

    CAS  Google Scholar 

  31. Ganapathy S, Schramm S, Oldfield E (1982) J. Chem. Phys. 77: 4360

    CAS  Google Scholar 

  32. Jäger C, Barth S, Feltz A (1989) Chem. Phys. Lett. 154: 45

    Google Scholar 

  33. Engelhard G, Koller H, Sieger P, Depmeier W, Samoson A (1992) Solid State Nucl. Magn. Reson. 1: 127

    Google Scholar 

  34. Jelinek R, Ozkar S, Ozin G A (1992) J. Phys. Chem. 96: 5949

    CAS  Google Scholar 

  35. Lin CF, Chao KJ (1990) J. Phys. Chem. 95: 9411

    Google Scholar 

  36. Veeman WS (1991) Z. Naturforsch. 47a: 353

    Google Scholar 

  37. Janssen R, Tijink GAH, Veeman WS, Maesen TLM, van Lent JF (1989) J. Phys. Chem. 93:899

    CAS  Google Scholar 

  38. Ohki H, Nakamura N (1992) Z. Naturforsch. 47a: 319

    Google Scholar 

  39. Peterson GE, Bridenbaugh PM (1968) J. Chem. Phys. 48: 3402

    CAS  Google Scholar 

  40. Halstead TK (1970) J. Chem. Phys. 53: 3427

    CAS  Google Scholar 

  41. Baiqin L, Yening W, Ziran X (1988) J. Phys. C: Solid State Phys 21: L251

    Google Scholar 

  42. Strange JH, Rageb SM, Slade RCT (1991) Philos. Mag. A64: 1159

    Google Scholar 

  43. Strange JH, Rageb SM, Chadwick AV, Flack KW (1990) J. Chem. Soc. Faraday Trans 86:1239

    CAS  Google Scholar 

  44. Grüne M, Meierkord H, Müller-Warmuth W, zum Hebel P, Krebs B, Wulf M (1989) Ber. Bunsenges. Phys. Chem 93: 1313

    Google Scholar 

  45. Wang B, Szu SP, Greenblatt M (1991) J. Non-Cryst. Solids 134: 249

    CAS  Google Scholar 

  46. Dupree R, Holland D, Mortuza MG (1990) J. Non-Cryst. Solids 116: 148

    CAS  Google Scholar 

  47. Eckert H, Zhang Z, Kennedy JH (1989) J. Non-Cryst. Solids 107: 271

    CAS  Google Scholar 

  48. Baltisberger JH, Gann SL, Wooten EW, Chang TH, Mueller KT, Pines A (1992) J. Am. Chem. Soc. 114: 7489

    CAS  Google Scholar 

  49. Farnan I, Grandinetti PJ, Baltisberger JH, Stebbins JF, Werner U, Eastman MA, Pines A (1992) Nature 358: 31

    CAS  Google Scholar 

  50. Mueller KT, Sun BQ, Chingas GC, Zwanziger JW, Terao T, Pines A (1990) J. Magn. Reson. 86: 470

    CAS  Google Scholar 

  51. Wu Y, Sun BQ, Pines A, Samoson A, Lippmaa E (1990) J. Magn. Reson. 89: 297

    Google Scholar 

  52. Mueller KT, Wu Y, Chmelka BF, Stebbins J, Pines A (1991) J. Am. Chem. Soc. 113: 33

    Google Scholar 

  53. Timken HKC, Turner GL, Gilson JP, Welsh LB, Oldfield E (1986) J. Am. Chem. Soc. 108: 7231

    CAS  Google Scholar 

  54. Timken HKC, Schramm SE, Kirkpatrick RJ, Oldfield E (1987) J. Phys. Chem. 91: 1054

    CAS  Google Scholar 

  55. Walter TH, Oldfield E (1989) J. Phys. Chem. 93: 6744

    CAS  Google Scholar 

  56. Brinkmann D (1993) High T c superconductors. NMR—Basic Principles and Progress, vol 31, Springer, Berlin Heidelberg New York

    Google Scholar 

  57. Special Issue (1993) Appl. Magn. Reson. 4: 1–236

    Google Scholar 

  58. Haase J, Freude D, Fröhlich T, Himpel G, Kerbe F, Lippmaa E, Pfeifer H, Sarv P, Schäfer H, Seifïert B (1989) Chem. Phys. Lett. 156: 328

    CAS  Google Scholar 

  59. Smith ME (1992) J. Phys. Chem. 96: 1444

    CAS  Google Scholar 

  60. Farnan I, Dupree R, Forty AJ, Jeong YS, Thompson GE, Wood GC (1989) Philos. Mag. Lett. 59: 189

    CAS  Google Scholar 

  61. Wu Y, Chmelka BF, Pines A, Davies ME, Grobet PJ, Jacobs PA (1990) Nature 346: 550

    CAS  Google Scholar 

  62. Grobet PJ, Samoson A, Geerts H, Martens JA, Jacobs PA (1991) J. Phys. Chem. 95: 9620

    CAS  Google Scholar 

  63. Gornostansky SD, Stager CV (1967) J. Chem. Phys. 46: 4959

    CAS  Google Scholar 

  64. France PW (1991) J. Magn. Reson. 92: 30

    CAS  Google Scholar 

  65. Nabavi M, Sanchez C, Livage J (1991) Philos. Mag. B63: 941

    Google Scholar 

  66. Iyer PS, Eckert H, Occelli ML, Stencel JM (1991) ACS Symp. Ser. 452: 242

    CAS  Google Scholar 

  67. Hardcastle FD, Wachs IE, Eckert H, Jefferson DA (1991) J. Solid State Chem. 90: 194

    CAS  Google Scholar 

  68. Nabavi M, Taulelle F, Sanchez C, Verdaguer M (1991) J. Phys. Chem. Solids 51: 1375

    Google Scholar 

  69. Baugher JF, Taylor PC, Oja T, Bray JP (1969) J. Chem. Phys. 50: 4914

    CAS  Google Scholar 

  70. Han OH, Timken HKC, Oldfield E (1988) J. Chem. Phys. 89: 6046

    CAS  Google Scholar 

  71. Douglass DC, Petersson GE (1986) J. Am. Ceram. Soc. 69: 48

    CAS  Google Scholar 

  72. Pfändler S, Kind R, Dolinsek J (1992) 26th Congress Ampere on Magnetic Resonance, Athens, Greece, Conference Proceedings, p 245

    Google Scholar 

  73. Petersen GE, Carruthers JR, Carnevale A (1970) J. Chem. Phys. 53: 2436

    Google Scholar 

  74. Man P, Theveneau H, Papon P (1985) J. Magn. Reson. 64: 271

    CAS  Google Scholar 

  75. Angel RJ, Prewitt CT (1986) Am. Mineralogist 71: 1476

    CAS  Google Scholar 

  76. Angel RJ, McMullan RK, Prewitt CT (1991) Am. Mineralogist 76: 332

    CAS  Google Scholar 

  77. Merwin LH, Sebald A, Rager H, Schneider H (1991) Phys. Chem. Minerals 18: 47

    CAS  Google Scholar 

  78. Sanz J, Madami A, Serratosa JM, Moya JS, Aza S (1988) J. Am. Ceram. Soc. 10: C418

    Google Scholar 

  79. Samoson A (1985) Chem. Phys. Lett. 119: 29

    CAS  Google Scholar 

  80. Müller D, Gessner W, Samoson A, Lippmaa E (1986) Polyhedron 5: 779

    Google Scholar 

  81. Phillips BL, Allen FM, Kirkpatrick RJ (1987) Am. Mineralogist 72: 1190

    CAS  Google Scholar 

  82. Jakobsen HJ, Skibstedt J, Bildsøe H, Nielson NC (1989) J. Magn. Reson. 85: 173

    CAS  Google Scholar 

  83. Nielsen NC, Bildsøe H, Jakobsen HJ (1991) Zeolites 11: 622

    CAS  Google Scholar 

  84. Skibstedt J, Bildsøe H, Jakobsen HJ (1991) J. Magn. Reson. 92: 669

    Google Scholar 

  85. Skibstedt J, Nielsen NC, Bildsøe H, Jakobsen HJ (1991) J. Magn. Reson. 95: 88

    Google Scholar 

  86. Skibstedt J, Nielsen NC, Bildsøe H, Jakobsen HJ (1992) Chem. Phys. Lett. 188: 405

    Google Scholar 

  87. Skibstedt J, Henderson E, Jakobsen HJ (1993) Inorganic Chemistry (in press)

    Google Scholar 

  88. Jakobsen H J, Daugaard P, Langer VJ (1988) J. Magn. Reson. 76: 162

    CAS  Google Scholar 

  89. Massiot D, Kahn-Harari A, Michel D, Müller D, Taulelle F (1990) Magn. Reson. Chem. 28: S82

    CAS  Google Scholar 

  90. Taulelle F, Bessada C, Massiot D (1992) J. Chim. Phys. 89: 379

    CAS  Google Scholar 

  91. Massiot D, Bessada C, Coutures JP, Taulelle F (1990) J. Magn. Reson. 90: 231

    CAS  Google Scholar 

  92. Alemany LB, Massiot D, Sherriff BL, Smith ME, Taulelle F (1991) Chem. Phys. Lett. 177:301

    CAS  Google Scholar 

  93. Jäger C, Rocha J, Klinowski J (1992) Chem. Phys. Lett. 188: 208

    Google Scholar 

  94. Jäger C (1992) J. Magn. Reson. 99: 353

    Google Scholar 

  95. Jäger C, Müller-Warmuth W, Mundus C, van Wiillen L (1992) J. Non-Cryst. Solids 149:209

    Google Scholar 

  96. Kunath G, Losso P, Steuernagel S, Schneider H, Jäger C (1992) Solid State Nucl. Magn. Reson. 1:261

    CAS  Google Scholar 

  97. Jäger C, Kunath G, Losso P, Scheler G (1993) Solid State Nucl. Magn. Reson. 2: 73

    Google Scholar 

  98. van Wüllen L (1993) PhD Thesis, Westfälische Wilhelms-Universität Münster, FRG

    Google Scholar 

  99. Cheng JT, Edwards JC, Ellis PD (1990) J. Phys. Chem. 94: 553

    CAS  Google Scholar 

  100. Power WP, Wasylishen RE, Mooibroek S, Pettitt BA, Danchura W (1990) J. Phys. Chem. 94: 591

    CAS  Google Scholar 

  101. Dupree R, Holland D, Mortuza MG (1990) J. Non-Cryst. Solids 116: 148

    CAS  Google Scholar 

  102. Losso P, Schnabel B, Jäger C, Sternberg U, Stachel D, Smith DO (1992) J. Non-Cryst. Solids 143: 265

    CAS  Google Scholar 

  103. Sternberg U (1987), 3rd Otto-Schott Colloquium Jena, poster contribution

    Google Scholar 

  104. Alemany LB, Timken HKC, Johnson ID (1988) J. Magn. Reson. 80: 438

    Google Scholar 

  105. Samoson A (1992) 26th Congress Ampere on Magnetic Resonance, Athens, Greece Conference Proceedings, p 263

    Google Scholar 

  106. Smith ME, Steuernagel S (1992) Solid State Nucl. Magn. Reson. 1: 175

    CAS  Google Scholar 

  107. Fitzerald JJ, Dec SF, Hamza AI (1989) Am. Mineral. 74: 1405

    Google Scholar 

  108. Garsche M, Tillmanns E, Almen H, Schneider H, Kupcik V (1991) Eur. J. Minerai. 3: 793

    CAS  Google Scholar 

  109. Jäger C, Dupree R, Kohn SC, Mortuza MG (1993) J. Non-Cryst. Solids 155: 95

    Google Scholar 

  110. Jäger D, Ehrt D (1988) Exp. Techn. d Physik, 36, 349 (1988)

    Google Scholar 

  111. Jäger C, Ehrt D, unpublished data

    Google Scholar 

  112. Jäger C, Kunath G, Losso P (1992) 26th Congress Ampere on Magnetic Resonance Athens, Greece, Conference Proceedings, p 375

    Google Scholar 

  113. Schirmer OF, Thiemann O, Wöhlecke M (1991) J. Phys. Chem. Solids 52: 185

    CAS  Google Scholar 

  114. Donnerberg HJ, Tomlinson SM, Catlow (1991) J. Phys. Chem. Solids 52: 201

    CAS  Google Scholar 

  115. Jellison GE, Feller SA, Bray PJ (1977) J. Magn. Reson. 27: 121

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jäger, C. (1994). Satellite Transition Spectroscopy of Quadrupolar Nuclei. In: Blümich, B. (eds) Solid-State NMR II. NMR Basic Principles and Progress, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50049-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50049-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50051-0

  • Online ISBN: 978-3-642-50049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics