Skip to main content

A Review of Nonlinear and Active Cochlear Models

  • Conference paper
Peripheral Auditory Mechanisms

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 64))

Abstract

This paper reviews nonlinear and active cochlear models with special attention to the question whether a “second filter” is needed for modeling two-tone suppression below the characteristic frequency (CF). The concept of a unidirectionally coupled “second filter” is inconsistent with experimental evidence that major cochlear mechanical nonlinear phenomena are affected by alterations of the organ of Corti. A possible way of modeling the below-CF suppression is suggested in terms of an indirect effect mediated by a baseline shift of the cochlear partition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, J.B. (1980). “Cochlear micromechanics — a method for transforming mechanical to neural tuning within the cochlea.” J. Acoust. Soc. Am. 62, 930–939.

    Article  Google Scholar 

  • Anderson, S.D. and Kemp, D.T.(1979). “The evoked cochlear mechanical response in laboratory primates, a preliminary report.” Arch. Otolaryn. 224, 47–54.

    Google Scholar 

  • Blachman, N.M.(1964). “Band-pass nonlinearities.” IRE Trans. Inform. Theory IT-10, 162–164.

    Article  Google Scholar 

  • Brownell, W.E., Bader, C.R., Bertrand, D. and Ribaupierre, Y. de (1985). “Evoked mechanical responses of isolated cochlear outer hair cells.” Science 227, 194–196.

    Article  Google Scholar 

  • Dallos, P., Harris, D.M., Relkin, E. and Cheatham, M.A.(1980). “Two-tone suppression and intermodulation distortion in the cochlea: effect of outer hair cell lesion.” In Psycho. Physiol. Behav. Stud. Hearing, Eds. van den Brink and Bilsen, Delft Univ. Press, Netherlands, pp242–249.

    Chapter  Google Scholar 

  • Davis, H.(1983). “An active process in cochlear mechanics.” Hearing Res. 9, 79–90.

    Article  Google Scholar 

  • de Boer, E.(1983). “Power amplification in an active model of the cochlea — short-wave case.” J. Acoust. Soc. Amer. 73, 577–579.

    Article  Google Scholar 

  • Diependal, R. J. and Viergever, M.A.(1983). “Nonlinear and active modeling of cochlear mechanics: a precarious affair” In Mechanics of Hearing, Eds. de Boer and Viergever, Martinus Nijhoff Pub., Delft Univ. Press, pp153–160.

    Chapter  Google Scholar 

  • Evans, E.F. and Wilson, J.P.(1973). “The frequency selectivity of the cochlea.” In Basic Mechanisms in Hearing, Ed. Moller, Academic Press, New York, pp519–551.

    Chapter  Google Scholar 

  • Goblick, T.J. and Pfeiffer, R.R.(1969). “Time domain measurements of cochlear nonlinearities using combination of click stimuli.” J. Acoust. Sco. Amer. 46, 924–938.

    Article  Google Scholar 

  • Goldstein, J.L. and Kiang, N.Y.S.(1968). “Neural correlates of the aural combination tone 2f1-f2.” Proc. IEEE 56, 981–992.

    Article  Google Scholar 

  • Hall, J.L.(1974). “Two-tone distortion products in a nonlinear model of the basilar membrane.” J. Acoust. Soc. Amer. 56, 1818–1828.

    Article  Google Scholar 

  • Hall, J.L.(1977). “Two-tone suppression in a nonlinear model of the basilar membrane.” J. Acoust. Soc. Amer. 61, 802–810.

    Article  Google Scholar 

  • Hall, J.L.(1981). “Observations ona nonlinear model for motion of the basilar membrane.” In Hearing Res. Theory Vol.1, Eds. Tobias and Schubert, Academic Press, New York, pp2–61.

    Google Scholar 

  • Hubbard, A.E. and Geisler, C.D.(1972). “A hybrid computer model of the cochlear partition.” J. Acoust. Soc. Amer. 51, 1895–1903.

    Article  Google Scholar 

  • Jau, Y.C. and Geisler, C.D. (1983). “Results from a cochlear model utilizing longitudinal coupling.” Same reference as Diependal and Viergever, pp169–176.

    Google Scholar 

  • Kemp, D.T.(1978). “Stimulated acoustic emissions from within the human auditory system.” J. Acoust. Soc. Amer. 64, 1386–1391.

    Article  Google Scholar 

  • Khanna S.M. and Leonard D.G.B.(1982). “Basilar membrane tuning in the cat cochlea.” Science 215, 305–306.

    Article  Google Scholar 

  • Kim, D.O., Molnar, C.E. and Pfeiffer, R.R.(1973). “A system of nonlinear differential equations modeling basilar-membrane motion.” J. Acoust. Soc. Am. 54, 1516–1529.

    Google Scholar 

  • Kim, D.O.(1980). “Cochlear mechanics: implications of electrophysiological and acoustical observations.” Hearing Res. 2, 297–317.

    Article  Google Scholar 

  • Kim, D.O., Molnar, C.E. and Matthews, J.W.(1980a). “Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear nerve fiber responses and in ear-canal sound pressure.” J. Acoust. Soc. Am. 67, 1704–1721.

    Article  Google Scholar 

  • Kim, D.O., Neely, S.T., Molnar, C.E. and Matthews, J.W.(1980b). “An active cochlear model with negative damping in the partition: comparison with Rhode’s ante- and post-mortem observations.” Same reference as Dallos et al, pp7–14.

    Google Scholar 

  • Kim, D.O.(1984). “Functional roles of the inner- and outer-hair-cell subsystems in the cochlea and brainstem.” In Hearing Science: Recent Advances, Ed. Berlin, College-Hill Press, San Diego, CA, pp241–262.

    Google Scholar 

  • Koshigoe, S. and Tubis, A.(1983). “A nonlinear feedback model for outer-hair-cell stereocilia and its implications for the respone of the auditory periphery.” Same reference as Diependal and Viergever, pp127–134.

    Google Scholar 

  • LePage, E.L.(1981). “The role of nonlinear mechanical processes in mammalian hearing.” Ph.D. thesis, Univ. Western Australia, Nedlands, Australia.

    Google Scholar 

  • Leshowitz, B.H. and Lindstrom, R.(1977). “Measurement of nonlinearities in listeners with sensorineural hearing loss.” In Psycho. Physiol. Hearing, Eds. Evans and Wilson, Academic Press, New York, pp283–292.

    Google Scholar 

  • Matthews, J.W.(1983). “Modeling reverse middle ear transmission of acoustic distortion signals.” Same reference as Diependal and Viergever, pp11–18.

    Google Scholar 

  • Mountain, D.C.(1980). “Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics.” Science 210, 71–72.

    Article  Google Scholar 

  • Mountain, D.C., Hubbard, A.E. and McMullen, T.A. (1983). “Electromechanical processes in the cochlea.” Same reference as Diependal and Viergever, pp1l9–126.

    Google Scholar 

  • Neely, S.T. and Kim, D.O.(1983). “An active cochlear model showing sharp tuning and high sensitivity.” Hearing Res. 9, 123–130.

    Article  Google Scholar 

  • Neely, S.T. and Kim, D.O.(1985). “A model for active elements in cochlear biomechanics.” To be submitted for publication.

    Google Scholar 

  • Netten, S.M. van and Duifhuis, H.(1983). “Modeling an active, nonlinear cochlea.” Same reference as Diependal and Viergever, pp143–152.

    Google Scholar 

  • Pfeiffer, R.R.(1970). “A model for two-tone inhibition of single cochlear-nerve fibers.” J. acoust. Soc. Am 48, 1373–1378.

    Article  Google Scholar 

  • Pfeiffer, R.R. and Kim, D.O.(1975). “Cochlear nerve fiber responses: distribution along the cochlear partition.” J. Acoust. Soc. Amer. 58, 867–869.

    Article  Google Scholar 

  • Rhode, W.S.(1971). “Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique.” J. Acoust. Soc. Am. 49, 1218–1231.

    Article  Google Scholar 

  • Robertson, D.(1976). “Correspondence between sharp tuning and two-tone inhibition in primary auditory neurones.” Nature 259, 477–478.

    Article  Google Scholar 

  • Sachs, M.B. and Kiang, N.Y.S.(1968). “Two-tone inhibition in auditory nerve fibers.” J. acoust. Soc. Am. 43, 1120–1128.

    Article  Google Scholar 

  • Schmiedt, R.A., Zwislocki, J.J. and Hamernik, R.P.(1980). “Effects of hair cell lesion on responses of cochlear nerve fibers.I.” J. Neurophysiol. 43, 1367–1389.

    Google Scholar 

  • Schmiedt, R.A.(1982). “Effects of low-frequency biasing on auditory nerve fiber activity.” J. Acoust. Soc. Am. 72, 142–150.

    Article  Google Scholar 

  • Sellick, P.M., Patuzzi, R. and Johnstone, B.M.(1982a). “Measurement of basilar membrane motion in the guinea pig using the MOssbauer technique.” J. Acoust. Soc. Am. 72, 131–141.

    Article  Google Scholar 

  • Sellick, P.M., Patuzzi, R. and Johnstone, B.M.(1982b). “Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound.” Hearing Res. 7, 199–221.

    Article  Google Scholar 

  • Siegel, J.H. and Kim, D.O.(1982). “Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity.” Hearing Res. 6, 171–182.

    Article  Google Scholar 

  • Siegel, J.H., Kim, D.O. and Molnar, C.E.(1982). “Effects of altering organ of Corti on cochlear distortion products f2-f1 and 2f1-f2.” J. Neurophysiol. 47, 303–328.

    Google Scholar 

  • Smoorenburg, G.F.(1972). “Combination tones and their origin.” J. Acoust. Soc. Am. 52, 615–632.

    Article  Google Scholar 

  • Smoorenburg, G.F.(1980). “Effects of temporary threshold shift on combination tone generation and two-tone suppression.” Hearing Res. 2, 347–355.

    Article  Google Scholar 

  • Weiss, T.F.(1982). “Bidirectional transduction in vertebrate hair cells: a mechanism for coupling mechanical and electrical processes.” Hearing Res. 7, 353–360.

    Article  Google Scholar 

  • Wightman, F.L., McGee, T. and Kramer, M.(1977). “ Factors influencing frequency selectivity in normal and hearing-impaired listeners.” Same reference as Leshowitz and Lindstrom, pp295–3 06.

    Google Scholar 

  • Wilson, J.P. and Johnstone, J.R.(1973). “Basilar-membrane correlates of the combination tone 2f1-f2.” Nature 241, 206–207.

    Article  Google Scholar 

  • Zwicker, E.(1977). “Masking-period patterns produced by very-low-frequency maskers and their possible relation to basilar-membrane displacement.” J. Acoust. Soc. Am. 61, 1031–1040.

    Article  Google Scholar 

  • Zwislocki, J.J. and Kletsky, E.J.(1980). “Micromechanics in the theory of cochlear mechanics.” Hearing Res. 2, 505–512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, D.O. (1986). A Review of Nonlinear and Active Cochlear Models. In: Allen, J.B., Hall, J.L., Hubbard, A.E., Neely, S.T., Tubis, A. (eds) Peripheral Auditory Mechanisms. Lecture Notes in Biomathematics, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50038-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50038-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16095-3

  • Online ISBN: 978-3-642-50038-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics