Skip to main content

Variance Properties of Local Polynomials and Ensuing Modifications

  • Conference paper
Statistical Theory and Computational Aspects of Smoothing

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Summary

Local polynomial regression estimation has a number of advantages and might become a “golden standard” for curve fitting. The attractive theoretical features are in partial contradiction to variance properties for random design and to practical experience. The conditional variance is unbounded. The unconditional variance is infinite when using optimal (compact) weights. A tutorial illustration of construction of weights for kernel and local polynomial estimators clarifies the mechanism of these problems. Properties are better for Gaussian weights, which are, however, computationally slow. We show the connection between numerical and statistical instabilities and corresponding solutions. The k-nearest-neighbour rule is shown to be an inadequate tool in this context. We propose a refined local modulation of bandwidth using a variance-bias compromise and local polynomial ridge regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brockmann, M., Gasser, T. & Herrmann, E. (1993). Locally adaptive bandwidth choice for kernel regression estimators. J. Amer. Statist. Assoc. 88, 1302–1309.

    Article  Google Scholar 

  • Chan, T. F., Golub, G. H. & LeVeque, R. J. (1983). Algorithms for computing the sample variance: Analysis and recommendations. The American Statistician 37, 242–247.

    Article  Google Scholar 

  • Chu, C. K. & Marron, J. S. (1991). Choosing a kernel regression estimator. Statist. Sci. 6, 404–433.

    Article  Google Scholar 

  • Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74, 829–836.

    Google Scholar 

  • Devroye, L. P. (1978). The uniform convergence of nearest neighbor regression function estimators and their application in optimization. IEEE Trans. Inform. Theory IT-24, 142–151.

    Article  Google Scholar 

  • Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21, 196–216.

    Article  Google Scholar 

  • Fan, J., Gasser, Th., Gijbels, I., Brockmann, M. & Engel, J. (1993). Local polynomial fitting: A standard for nonparametric regression. Manuscript.

    Google Scholar 

  • Fan, J. Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. Ann. Statist. 20, 2008–2036.

    Article  Google Scholar 

  • Gasser, Th. & Müller, H.-G. (1979). Kernel estimation of regression functions. In: Smoothing techniques for curve estimation. Lecture Notes in Math. 757, 23–68. New York, Springer.

    Chapter  Google Scholar 

  • Gasser, Th. & Müller, H.-G. (1984). Estimating regression functions and their derivatives by the kernel method.Scand. J. Statist. 11, 171–185.

    Google Scholar 

  • Hall, P. & Marron, J. S. (1987). On the amount of noise inherent in bandwidth selection for a kernel density estimator. Ann. Statist. 15, 163–181.

    Article  Google Scholar 

  • Hastie, T. & Loader, C. (1993). Local regression: Automatic kernel carpentry. Statist. Sci. 8, 120–143.

    Article  Google Scholar 

  • Herrmann, E. (1994a). Local bandwidth choice in kernel regression estimation. Manuscript.

    Google Scholar 

  • Herrmann, E. (1994b). A note on the convolution type kernel regression estimator. Manuscript.

    Google Scholar 

  • Jennen-Steinmetz, Ch. & Gasser, Th. (1988). A unifying approach to non-parametric regression estimation. J. Amer. Statist. Assoc. 83, 1084–1089.

    Article  Google Scholar 

  • Lejeune, M. (1985). Estimation non-paramétrique par noyaux: regression polynomiale mobile. Revue de Statist. Appliq. 33, 43–68.

    Google Scholar 

  • Macauley, F. R. (1931). The smoothing of time series. New York: National Bureau of Economic Research.

    Google Scholar 

  • Müller, H.-G. (1988). Nonparametric Regression Analysis of Longitudinal Data. Lecture Notes in Statistics 46. Berlin, Springer.

    Book  Google Scholar 

  • Nadaraya, E. A. (1964). On estimating regression. Theory Probab. Appl. 9, 141–142.

    Article  Google Scholar 

  • Priestley, M. B. & Chao, M. T. (1972). Non-parametric function fitting. J. Roy. Statist. Soc. Ser. B 34, 385–392.

    Google Scholar 

  • Reinsch, C. H. (1967). Smoothing by spline functions. Numer. Math. 10, 177–183.

    Article  Google Scholar 

  • Ruppert, D. & Wand, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22, 1346–1370.

    Article  Google Scholar 

  • Schoenberg, I. J. (1964). Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. USA 52, 947–950.

    Article  Google Scholar 

  • Seifert, B., Brockmann, M., Engel, J. & Gasser, T. (1994). Fast algorithms for nonparametric curve estimation. J. Comp. Graph. Statist. 3, 192–213.

    Article  Google Scholar 

  • Seifert, B. & Gasser, T. (1996). Finite sample variance of local polynomials: Analysis and solutions. J. Amer. Statist. Assoc., to appear.

    Google Scholar 

  • Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. Ann. Statist. 12, 898–916.

    Article  Google Scholar 

  • Stone, C. J. (1977). Consistent Nonparametric Regression.Ann. Statist. 5, 595–645.

    Article  Google Scholar 

  • Watson, G. S. (1964). Smooth regression analysis. Sankhyā Ser. A 26, 359–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Physica-Verlag Heidelberg

About this paper

Cite this paper

Seifert, B., Gasser, T. (1996). Variance Properties of Local Polynomials and Ensuing Modifications. In: Härdle, W., Schimek, M.G. (eds) Statistical Theory and Computational Aspects of Smoothing. Contributions to Statistics. Physica-Verlag HD. https://doi.org/10.1007/978-3-642-48425-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48425-4_3

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-7908-0930-5

  • Online ISBN: 978-3-642-48425-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics