Skip to main content

The Invariance of Statistical Analyses with Smoothing Splines with Respect to the Inner Product in the Reproducing Kernel Hilbert Space

  • Conference paper
Statistical Theory and Computational Aspects of Smoothing

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 574 Accesses

Summary

Analyses with smoothing splines are conveniently formalized using a reproducing kernel Hilbert space. The inner product in such a space and the corresponding reproducing kernel — given a smoothness criterion — can be defined in infinitely many ways. The smoothing spline itself is known to be independent of the choice of the inner product. Furthermore it is proven that the usual statistical inferences with smoothing splines (under different distributional assumptions leading to signal extraction, Bayesian or minimax estimation) and particularly the smoothing error are invariant w.r.t. to the choice of the inner product. For a special inner product the smoothing spline is an orthogonal projection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansley, C.F., Kohn, R. (1986). On the equivalence of two stochastic approaches to spline smoothing, J. Appl. Prob. 23A, 391–405

    Article  Google Scholar 

  2. Böhmer, K. (1974). Spline Funktionen, Teubner, Stuttgart

    Google Scholar 

  3. Kimeidorf, G.S., Wahba, G. (1970). Spline functions and stoachstic processes, Sankya A 132, 173–180

    Google Scholar 

  4. Kimeidorf, G.S., Wahba, G. (1971). Some results on Tschebycheffian spline functions, J. Math. Anal. Appl. 33, 82–95

    Article  Google Scholar 

  5. Larkin, F.M.(1983). The weak Gaussian distribution as a means of localization in Hilbert space, in: Gorenflo, R., Hoffmann, K.H., (Eds.), Applied Nonlinear Functional analysis, Verlag Peter Lang, Frankfurt a.M.

    Google Scholar 

  6. Li, K.C. (1982). Minimaxity of the method of regularization on stochastic processes, Ann. Statist. 10, 937–942

    Article  Google Scholar 

  7. Meinguet, J. (1979) Multivariate interpolation at arbitrary points made simple, J. Appl. Math. Phy. 30, 292–304

    Article  Google Scholar 

  8. Meinguet, J.(1984). Surface spline interpolation. Basic theory and computational aspects, in: Singh, S.P. (1984), (Ed.), Approximation Theory and Spline Functions, Reidel Publ. Comp.

    Google Scholar 

  9. Parzen, E.(1959). Statistical inference on time series by Hilbert space methods I, Technical Report No 23, Statistics Department, Standford University, (reprinted in Parzen, E.(1967). Time Series Analysis, San Francisco)

    Google Scholar 

  10. Peele, L., Kimeldorf, G.S. (1977) Prediction functions and mean estimation functions for a time series, Ann. Statist. 5, 709–721

    Article  Google Scholar 

  11. Robinson, T., Moyeed, R. (1989) Making robust the cross-validatory choice of smoothing parameter in spline smoothing regression, Comm. Statist.-Theor. Meth. 18, 523–539

    Article  Google Scholar 

  12. Sard, A. (1967). Optimal Approximation, J. Functional Analysis 1, 222–244

    Article  Google Scholar 

  13. Silverman, B., Some aspects of the spline smoothing approach to non-parametric regression curve fitting, J. Roy. Statist. Soc. B 47, 1–52 (with discussion)

    Google Scholar 

  14. Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regressions, J. Roy. Statist. Soc. B 40, 364–372

    Google Scholar 

  15. Wahba, G. (1984). Cross-validated spline methods for the estimation of multivariate functions from data on functionals, in David, H.A., (Ed.), Statistics. An Appraisal, Iowa State University Press

    Google Scholar 

  16. Wahba, G. (1990). Spline models for observational data, Society for Industrial and Applied Mathematics, Philadelphia, P.A.

    Google Scholar 

  17. Weinert, H.L. (1978). Statistical methods in optimal curve fitting, Comm. Statist. - Theor. Meth. 7, 417–435

    Google Scholar 

  18. Weinert, H.L., Kailath, T. (1974). Stochastic interpretations and recursive algorithms for spline functions, Ann. Statist. 2, 787–794

    Article  Google Scholar 

  19. Weinert, H.L., Sidhu, G.S., Byrd, R.H. (1977). Stochastic error analysis of spline approximation, in Proc. IEEE conf. on Decision and Control, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Physica-Verlag Heidelberg

About this paper

Cite this paper

van der Linde, A. (1996). The Invariance of Statistical Analyses with Smoothing Splines with Respect to the Inner Product in the Reproducing Kernel Hilbert Space. In: Härdle, W., Schimek, M.G. (eds) Statistical Theory and Computational Aspects of Smoothing. Contributions to Statistics. Physica-Verlag HD. https://doi.org/10.1007/978-3-642-48425-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48425-4_12

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-7908-0930-5

  • Online ISBN: 978-3-642-48425-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics