Skip to main content

Protein-Oligosaccharide Interactions: Lysozyme, Phosphorylase, Amylases

  • Conference paper
Carbohydrate-Protein Interaction

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 139))

Abstract

Polysaccharides have many diverse biological roles. They comprise the insoluble structural and supportive elements of bacterial and plant cell walls. They serve as storage macromolecules (e.g., glycogen and starch) to provide fuel for cells, and they form important components in the heteromacromolecules, proteoglycans and glycoproteins, which are involved in the structural elements of connective tissue, in the lubrication of skeletal joints, in cell-cell adhesion and in cell-surface recognition. The enzymes that catalyze the biosynthesis and degradation of these polysaccharides are highly specific, resulting, in the case of biosynthesis, in polymers of defined constitution and sequence and, in the case of degradation in the cleavage of specific linkages. In this article we describe the X-ray structural results for three of these enzymes: lysozyme, glycogen phosphorylase, and amylase. Each catalyzes a specific step in the degradation of different polysaccharides. (To date there are no structural data on any of the biosynthetic enzymes.) Lysozyme catalyzes the hydrolysis of a β-(1–4) linkage of bacterial cell wall polysaccharides; glycogen phosphorylase catalyzes the reversible phosphorylation of α-(1–4) linkages of glycogen and amylase catalyzes the hydrolysis of α-(1–4) linkages in starch. We use these results in an attempt to draw together some general principles that appear to be important in generating a protein-oligosaccharide recognition site and compare these features with protein monosaccharide sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson WF, Grutter MG, Remington SJ, Matthews BW (1981) Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis. J Mol Biol 147:523–543.

    PubMed  CAS  Google Scholar 

  • Ariki M, Fukui T (1977) Affinity of glucose analogues for α-glucan phosphorylases from rabbit muscle and potato tubers. J Biochem (Tokyo) 81:1017–1024.

    PubMed  CAS  Google Scholar 

  • Arnheim N, Inouye M, Low L, Laudin A (1973) Chemical studies on the enzymatic specificity of goose egg-white lysozyme. J Biol Chem 248:233–236.

    PubMed  CAS  Google Scholar 

  • Arnott S, Scott WE (1972) Accurate x-ray diffraction analysis of fibrous polysaccharides containing pyranose rings. Part I. The linked atom approach. J Chem Soc Perkin II: 324–335.

    Google Scholar 

  • Artymiuk PJ (1979) X-Ray Studies of Biological Macromolecules: The Refinement of Human Lysozyme at 1.5 Å Resolution. D. Phil. Thesis, University of Oxford.

    Google Scholar 

  • Artymiuk PJ, Blake CCF (1981) Human lysozyme at 1.5 Å resolution. J Mol Biol 152:737–762.

    PubMed  CAS  Google Scholar 

  • Artymiuk PJ, Rice DW (1980-81) Progress report. Laboratory of molecular biophysics, University of Oxford, p 25.

    Google Scholar 

  • Aschaffenburg R, Blake CCF, Dickie HM, Gayen SK, Keegan R, Sen A (1980) The crystal structure of tortoise egg-white lysozyme at 6 Å resolution. Biochim Biophys Acta 625:64–71.

    PubMed  CAS  Google Scholar 

  • Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44:97–179.

    PubMed  CAS  Google Scholar 

  • Banerjee SK, Holler E, Hess GP, Rupley JA (1975) Reaction of N-acetylglucosamine oligosaccharides with lysozyme. J Biol Chem 250:4355–4367.

    PubMed  CAS  Google Scholar 

  • Banyard SE (1973) X-Ray Diffraction Studies of Enzymes. D Phil Thesis, University of Oxford.

    Google Scholar 

  • Beddell CR, Moult J, Phillips DC (1970) Crystallographic studies of the active site of lysozyme. In: Porter R, O’Connor M (eds) Ciba found symp on molecular properties of drug receptors. Churchill, London.

    Google Scholar 

  • Beevers CA, Maconochie GH (1965) The crystal structure of dipotassium glucose-1-phosphate dihydrate. Acta Crystallogr 18:232–236.

    PubMed  CAS  Google Scholar 

  • Bienkowska K, Taylor A (1979) Low molecular weight substrate for the lysozyme of T4 bacteriophage. Eur J Biochem 96:581–584.

    PubMed  CAS  Google Scholar 

  • Black WJ, Wang JH (1968) Studies on the allosteric activation of glycogen phosphorylase b by nucleotides. I. Activation of phosphorylase b by inosine monophosphate. J Biol Chem 243:5892–5898.

    PubMed  CAS  Google Scholar 

  • Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2.0 Å resolution. Nature 206:757–761.

    PubMed  CAS  Google Scholar 

  • Blake CCF, Mair GA, North ACT, Phillips DC, Sarma VR (1967 a) On the conformation of the hen egg-white lysozyme molecule. Proc R Soc Lond [Biol] B 167:365–377.

    CAS  Google Scholar 

  • Blake CCF, Johnson LN, Mair GA, North ACT, Phillips DC, Sarma VR (1967 b) Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc Lond [Biol] B 167:378–388.

    CAS  Google Scholar 

  • Branden CI (1980) Relation between structure and function of α/β proteins. Q Rev Biophys 13:317–338.

    Google Scholar 

  • Branden CI (1986) The relation between protein structure in α/β domains and the intron-exon arrangement of the corresponding genes. Nobel symposium (in press).

    Google Scholar 

  • Busby SJW, Rädda GK (1976) Regulation of the glycogen phosphorylase system. Curr Top Cell Regul 10:89–160.

    PubMed  CAS  Google Scholar 

  • Caudwell B, Antoniw JF, Cohen P (1978) Calsequestrin, myosin and the components of the protein-glycogen complex in rabbit skeletal muscle. Eur J Biochem 86:511–518.

    PubMed  CAS  Google Scholar 

  • Cassels R (1979) Investigation of protein structure-lysozyme in the crystalline and solution states. Ph D thesis, University of Oxford.

    Google Scholar 

  • Cheetham JC (1986) Studies of enzyme-inhibitor interactions and protein dynamics. Ph D thesis, University of Oxford.

    Google Scholar 

  • Cheetham JC, Artymiuk PA, Phillips DC (1987) The refinement of an enzyme complex with inhibitor bound at partial occupancy: HEWL + triNAG at 1.75 Å resolution. (Manuscript in preparation)

    Google Scholar 

  • Chu SJC, Jeffrey GA (1967) The crystal structure of methyl β-maltopyranoside. Acta Crystallogr 23:1038–1049.

    PubMed  CAS  Google Scholar 

  • Cohen P (1978) Hormonal control of muscle glycogen metabolism. Curr Top Cell Reg 14:117–196.

    CAS  Google Scholar 

  • Cohen P (1983) Control of enzyme activity, 2nd edn. Chapman and Hall, London.

    Google Scholar 

  • Dobson CM (1975) The Confirmation of Lysozyme in Solution. D Phil Thesis, University of Oxford.

    Google Scholar 

  • Dombraidi V (1981) Structural aspects of the catalytic and regulatory function of glycogen phosphorylase. Int J Biochem 13:125–139.

    Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond (Biol) B93:306–317.

    Google Scholar 

  • Fletterick RJ, Madsen NB (1980) The structures and related functions of phosphorylase a. Annu Rev Biochem 49:31–61.

    PubMed  CAS  Google Scholar 

  • Fletterick RJ, Sprang SR (1982) Glycogen phosphorylase structure and function. Ace Chem Res 15:361–369.

    CAS  Google Scholar 

  • Ford LO, Johnson LN, Machin PA, Phillips DC, Tjian RJ (1974) Crystal structure of a lysozyme-tetrasaccharide lactone complex. J Mol Biol 88:349–371.

    PubMed  CAS  Google Scholar 

  • Gallay O (1984) X-ray studies on an enzyme: X-ray crystallography of the binding of a tetrasaccharide to tortoise egg-white lysosome. Part II. Thesis, University of Oxford.

    Google Scholar 

  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32:425–464.

    PubMed  CAS  Google Scholar 

  • Goldsmith E, Fletterick R (1983) Oligosaccharide conformation and protein saccharide interactions in solution. Pure Appl Chem 55:577–588.

    CAS  Google Scholar 

  • Goldsmith E, Sprang S, Fletterick R (1982) Structure of maltoheptose by difference Fourier methods and a model for glycogen. J Mol Biol 156:411–427.

    PubMed  CAS  Google Scholar 

  • Goldsmith EJ, Fletterick RJ, Withers SG (1987) The three-dimensional structure of acarbose bound to glycogen phosphorylase. J Biol Chem 262:1449–1455.

    PubMed  CAS  Google Scholar 

  • Grace DEP (1980) A refined analysis of the structure of lysozyme and its interactions with substrates. Phil thesis, University of Oxford.

    Google Scholar 

  • Graves DJ, Wang JH (1972) α-glucan phosphorylases-chemical and physical basis of catalysis and regulation. Boyer P (ed) The Enzymes, 3rd edn, vol 7. Academic, New York, pp 435–482.

    Google Scholar 

  • Gress ME, Jeffrey GA (1977) A neutron diffraction refinement of the crystal of β-maltose monohydrate. Acta Cryst B33:2490–2495.

    CAS  Google Scholar 

  • Grutter MG, Matthews BW (1982) Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding. J Mol Biol 154:525–535.

    PubMed  CAS  Google Scholar 

  • Grutter MG, Weaver LH, Matthews BW (1983) Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature 303:828–831.

    PubMed  CAS  Google Scholar 

  • Hajdu J, Acharya KR, Stuart DI, McLaughlin PJ, Barford D, Oikonomakos NG, Klein H, Johnson LN (1987) Catalysis in the crystal: synchrotron radiation studies with glacogen phosphorylase b. EMBO J 6:539–546.

    PubMed  CAS  Google Scholar 

  • Handoll HHG (1985) PhD thesis, University of Oxford.

    Google Scholar 

  • Handoll HHG, Artymiuk PJ, Grace DEP, Phillips DC (1987) A description and comparison of the refined structures of the original model of tetragonal hen egg-white lysozyme to 2.0 Å resolution and that of a closely related tetragonal form at 1.6 Å crystallised at higher pH. (Manuscript in preparation).

    Google Scholar 

  • Haschke RM, Gratz KW, Heilmeyer LMG (1972) The role of phosphorylase activity in a muscle glycogen particle. J Biol Chem 247:5351–5356.

    PubMed  CAS  Google Scholar 

  • Hehre EJ, Brewer CF, Uchiyama T, Schlesselmann P, Lehmann J (1980) Scope and mechanism of carbohydrase action. Stereospecific hydration of 2,6-anhydro-l-deoxy-D-gluco-hept-1-enitol catalysed by α-and β-glucosidases and an inverting exo-α-glucanase. Biochemistry 19:3557–3564.

    PubMed  CAS  Google Scholar 

  • Heilmeyer LMG, Meyer F, Haschke RH, Fischer EH (1970) Control of phosphorylase activity in a muscle glycogen particle, Π. Activation by calcium. J Biol Chem 245:6649–6656.

    PubMed  CAS  Google Scholar 

  • Helmreich EJM, Klein H (1980) The role of pyridoxal phosphate in the catalysis of glycogen phospho-rylases. Angew Chem Int 19:441–455.

    CAS  Google Scholar 

  • Helmreich EJM, Michaelides MC, Cori CF (1967) Effects of substrates and a substrate analog on the binding of 5′-adenylic acid to muscle phosphorylase a. Biochemistry 6:3695–3710.

    PubMed  CAS  Google Scholar 

  • Hendrickson WA, Konnert JH (1980) Incorporation of stereochemical information into crystallo-graphic refinement. In: Diamond R, Ramaseshan S, Venkatesan K (eds) Computing in crystallography. Indian Academy of Science, pp 13.01–13.23.

    Google Scholar 

  • Hogle J, Rao ST, Mallikarjunan M, Beddell C, McMullan RK, Sandaralingam M (1981) Studies of monoclinic hen egg-white lysozyme. I. Structure solution at 4 Å resolution and molecular packing comparisons with tetragonal and triclinic lysozymes. Acta Crystallogr B37:591–597.

    CAS  Google Scholar 

  • Holler E, Rupley JA, Hess GP (1975) Productive and unproductive lysozyme-chitosaccharide complexes. Equilibrium measurements. Biochemistry 14:1088–1094.

    PubMed  CAS  Google Scholar 

  • Hu HY, Gold AM (1975) kinetics of glycogen phosphorylase a with a series of semisynthetic branched saccharides. Biochemistry 14:2224–2230.

    PubMed  CAS  Google Scholar 

  • Imoto T, Johnson LN, North ACT, Phillips DC, Rupley JA (1972) Vertebrate lysozymes. In: Boyer PD (ed) The enzymes, 3rd edn, vol 7. Academic, New York, pp 665–868.

    Google Scholar 

  • Jacobson RA, Wunderlich JA, Lipscomb WA (1961) The crystal and molecular structure of cellobiose. Acta Crystallogr 14:598–607.

    CAS  Google Scholar 

  • Jeanloz RW, Sharon N, Flowers HM (1963) The chemical structure of a disaccharide isolated from Micrococcus lysodeiktius cell wall. Biochem Biophys res Commun 13:20–25.

    PubMed  CAS  Google Scholar 

  • Jenkins JA, Johnson LN, Stuart DI, Stura EA, Wilson KS, Zanotti G (1981) Phosphorylase: control and activity. Philos Trans R Soc Lond [Biol] B293:23–41.

    Google Scholar 

  • Johnson LM, Phillips DC, Rupley JA (1968) The activity of lysozyme: An interim review of crystallo-graphic and chemical evidence. Brookhaven Symp Biology 21:120–138.

    CAS  Google Scholar 

  • Johnson LN, Phillips DC (1965) Structure of some crystalline lysozyme-inhibitor complexes determined by x-ray analysis at 5 Å resolution. Nature 206:761–763.

    PubMed  CAS  Google Scholar 

  • Johnson LN, Jenkins JA, Wilson KS, Stura EA, Zanotti G (1980) Proposals for the catalytic mechanism of glycogen phosphorylase b. J Mol Biol 140:565–580.

    PubMed  CAS  Google Scholar 

  • Johnson LN, Stura EA, Sansom MSP, Babu YS (1983) Oligosaccharide binding to glycogen phosphorylase b. Biochem Soc Trans Π: 142–144.

    Google Scholar 

  • Johnson LN, Hajdu J, Acharya KR, Stuart DI, McLaughlin PJ, Oikonomakos NG, Barford D (1988) Glycogen Phosphorylase b. In: Herve G (ed) Allosteric Enzymes. CRC Press, Florida (in press).

    Google Scholar 

  • Jolles P, Jolles J (1984) Review of progress in lysozyme research. Mol Cell Biochem 63:165–189.

    PubMed  CAS  Google Scholar 

  • Kasvinsky PJ, Madsen NB (1976) Activity of glycogen phosphorylase in the crystalline state. J Biol Chem 251:6852–6859.

    PubMed  CAS  Google Scholar 

  • Kasvinsky PJ, Madsen NB, Fletterick RJ, Sygusch J (1978) X-ray crystallographic and kinetic studies of oligosaccharide binding to phosphorylase. J Biol Chem 253:1290–1296.

    PubMed  CAS  Google Scholar 

  • Kelly JA, Sielecki AR, Sykes BD, James MNG, Phillips DC (1979) X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature 282:875–878.

    PubMed  CAS  Google Scholar 

  • Kelly JA, Sielecki AR, Sykes BD, James MNG, Phillips DC (1979) X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature 282:875–878.

    PubMed  CAS  Google Scholar 

  • Kirkman BR, Whelan WJ (1986) Glucosamine is a normal component of liver glycogen. FEBS Lett 194:6–11.

    PubMed  CAS  Google Scholar 

  • Klein MW, Im MJ, Palm D, Helmreich EJM (1984) Does pyridoxal 5′-phosphate function in glycogen phosphorylase as an electrophilic or a general acid catalyst? Biochemistry 23:5853–5861.

    PubMed  CAS  Google Scholar 

  • Klein MW, Im MJ, Palm DL (1986) Mechanism of the phosphorylase reaction: utilisation of D-gluco-hept-1-enitol in the absence of primer. Eur J Biochem 57:107–114.

    Google Scholar 

  • Kleppe G, Vasstrand E, Jensen HB (1981) The specificity requirements of bacteriophage T4 lysozyme. Involvement of the N-acetamido groups. Eur J Biochem 119:589–593.

    PubMed  CAS  Google Scholar 

  • Kurachi K, Sieker LC, Jensen LH (1976) Structures of triclinic mono-and di-N-acetylglucosamine: lysozyme complexes — a crystallographic study. J Mol Biol 101:11–24.

    PubMed  CAS  Google Scholar 

  • Kuramitsu S, Ikeda K, Hamaguchi K (1977) Effects of ionic strength and temperature on the ioniza-tion of the catalytic groups, Asp 52 and Glu 35, in hen lysozyme. J Biochem (Tokyo) 82:585–597.

    CAS  Google Scholar 

  • Larner J, Takeda Y, Hizukuri S (1976) The influence of chain size and molecular weight on the kinetic constants for the span glucose to polysaccharide for rabbit muscle glycogen synthase. Mol Cell Biochem 12:131–136.

    PubMed  CAS  Google Scholar 

  • Lehrer SS, Fasman GD (1966) The Fluorescence of Lysozyme and Lysozyme Substrate Complexes. Biochem Biophys Res Commun 23:133–139.

    PubMed  CAS  Google Scholar 

  • Levitt M (1972) Conformation analysis of proteins. Ph D thesis, University of Cambridge.

    Google Scholar 

  • Levitt M (1974) On the nature of the binding of hexa-N-acetylglucosamine substrate to lysozyme. In: Blout ER, Bovrey FA, Goodman M, Lotan N (eds) Peptides, polypeptides and proteins. Wiley, New York, pp 99–113.

    Google Scholar 

  • Liddington R (1981) X-ray studies on lysozyme. Chemistry. Part II. Thesis, University of Oxford.

    Google Scholar 

  • Loyter A, Schramm M (1966) Multimolecular complexes of α-amylase with glycogen limit dextrin. J Biol Chem 241:2611–2617.

    PubMed  CAS  Google Scholar 

  • Madsen NB, Withers SG (1986) Glycogen phosphorylase in coenzymes and cofactors. In: Dolphin D, Poulson R, Avramovic O (eds) Pyridoxal phosphate and derivatives. Wiley, New York.

    Google Scholar 

  • Manor PC, Saenger W (1974) Topography of cyclodextrin inclusion complexes. J Am Chem Soc 96:3630–3639.

    CAS  Google Scholar 

  • Mason SA, Bentley GA, McIntyre GJ (1984) Deuterium exchange in lysozyme at 1.4 Å resolution. In: Schoenborn P (ed) Neutrons in biology. Plenum, NY.

    Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka amylase A. J Biochem (Tokyo) 95:697–702.

    CAS  Google Scholar 

  • Matthews BW, Remington SJ (1974) The three dimensional structure of the lysozyme from bacteriophage T4. Proc Natl Acad Sci USA 71:4178–4182.

    PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Stuart DI, Klein HW, Oikonomakos NG, Johnson LN (1984) Substrate cofactor interactions for glycogen phosphorylase b. A binding study in the crystal with heptenitol and heptulose-2-phosphate. Biochemistry 23:5862–5873.

    PubMed  CAS  Google Scholar 

  • Metzger B, Helmreich E, Glaser L (1967) The mechanism of activation of skeletal muscle phosphorylase a by glycogen. Proc Natl Acad Sci USA 57:994–1001.

    PubMed  CAS  Google Scholar 

  • Meyer F, Heilmeyer LMG, Haschke RM, Fischer EH (1970) Control of phosphorylase activity in the glycogen particle. Isolation and characterisation of the protein glycogen complex. J Biol Chem 245:6642–6648.

    PubMed  CAS  Google Scholar 

  • Mo F, Jensen LH (1978) The crystal structure of a β-(1–4) linked disaccharide, α-N,N′-Diacetylchitobiose monohydrate. Acta Crystallogr B34:1562–1569.

    CAS  Google Scholar 

  • Monod J, Changeux JP, Wyman J (1965) On the nature of allosteric transitims: a plausible model. J Mol Biol 12:88–118.

    PubMed  CAS  Google Scholar 

  • Moult J, Yonath A, Traub W, Smilansky A, Podjarny A, Rabionvich P, Saya A (1976) The structure of triclinic lysozyme at 2.5 Å resolution. J Mol Biol 100:179–195.

    PubMed  CAS  Google Scholar 

  • Najmudin S (1984) The control and activity of Phosphorylase: crystallographic study of some metabolite analogues (Phosphate, Glucosamine 1-Phosphate and Adenosine 5′-O-Monothio-phosphate) binding to Phosphorylase b. Biochemistry. Part II. Thesis, University of Oxford.

    Google Scholar 

  • Nakano K, Fukui T (1986) The complete amino acid sequence of potato α-glucan phosphorylase. J Biol Chem 261:8230–8236.

    PubMed  CAS  Google Scholar 

  • Nakano K, Hwang PK, Fletterick RJ (1986) Complete cDNA sequence for rabbit muscle glycogen phosphorylase. FEBS Lett 204:283–287.

    PubMed  CAS  Google Scholar 

  • Narendra N, Seshadri TP, Viswamittra MA (1984) The structure of the disodium salt of glucose-1-phosphate hydrate. Acta Crystallogr C40:1338–1340.

    CAS  Google Scholar 

  • Oatley SJO (1973) Structural studies of biological macromolecules. Chemistry. Part II. Thesis, University of Oxford.

    Google Scholar 

  • Palm D, Goerl R, Burger KJ (1985) Evolution of catalytic and regulatory sites in phosphorylases. Nature 313:500–502.

    PubMed  CAS  Google Scholar 

  • Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News 24:1375–1377.

    CAS  Google Scholar 

  • Payan F, Maser R, Pierrot M, Frey M, Astier JP (1980) The three-dimensional structure of a-amylase from porcine pancreas at 5 Å resolution. Acta Crystallogr B36:416–421.

    CAS  Google Scholar 

  • Perkins SJ, Johnson LN, Machin PA, Phillips DC (1979) Crystal structures of hen egg-white lysozyme complexes with Gd(III) and Gd(III)-N-acetylglucosamine. Biochem J 181:21–36.

    PubMed  CAS  Google Scholar 

  • Pflugrath JW, Weigand G, Huber R (1986) Crystal structure determination, refinement and molecular model of α-amylase inhibitor Hoe-467A. J Mol Biol 189:383–386.

    PubMed  CAS  Google Scholar 

  • Philip G, Gringel G, Palm D (1982) Rabbit muscle phosphorylase derivatives with oligosaccharides covalently bound to the glycogen storage sites. Biochemistry 21:3043–3050.

    PubMed  CAS  Google Scholar 

  • Phillips DC (1966) The three-dimensional structure of an enzyme molecule. Sci Am 215:78–90.

    PubMed  CAS  Google Scholar 

  • Phillips DC (1986) Protein structure and function. Fifty years of the Patterson function. Oxford University Press, Oxford.

    Google Scholar 

  • Pincus MR, Scheraga HA (1981) Prediction of the three-dimensional structures of complexes of lysozyme with cell wall substrates. Biochemistry 20:3960–3965.

    PubMed  CAS  Google Scholar 

  • Post CB, Brooks BR, Karplus M, Dobson CM, Artymiuk PJ, Cheetham JC, Phillips DC (1986) Molecular dynamics simultaneous of native and substrate-bound lysozyme. A study of the average structures and atomic fluctuations. J Mol Biol 190:455–479.

    PubMed  CAS  Google Scholar 

  • Prager EM, Wilson AC, Arnheim N (1974) Widespread distribution of lysozyme g in egg-white of birds. J Biol Chem 249:7295–7297.

    PubMed  CAS  Google Scholar 

  • Pulford WCA (1982) X-ray studies of enzyme action. Ph D thesis, University of Oxford.

    Google Scholar 

  • Quigley GJ, Saiko A, Marchessault RM (1970) Crystal and molecular structure of maltose monohydrate. J Am Chem Soc 92:5834–5839.

    CAS  Google Scholar 

  • Quiocho FA (1986) Carbohydrate binding proteins: Tertiary structures and protein sugar interactions. Annu Rev Biochem 55:287–315.

    PubMed  CAS  Google Scholar 

  • Quiocho FA, Vyas NK (1984) Novel stereospecificity of the L-arabinose binding protein. Nature 310:381–386.

    PubMed  CAS  Google Scholar 

  • Rees DA, Smith PJC (1975) Polysaccharide conformation Part IX. Monte Carlo calculation of conformational energies for disaccharides and comparison with experiment. J Chem Soc II: 836–840.

    Google Scholar 

  • Remington SJ, Anderson WF, Owen J, Ten Eyck LF, Grainger CT, Matthews BW (1978) Structure of the lysozyme from bacteriophage T4: an electron density map at 2.4 A resolution. J Mol Biol 118:81–98.

    PubMed  CAS  Google Scholar 

  • Romero PA, Smith EE, Whelan WJ (1980) Glucosamines as a substitute for glucose in glycogen metabolism. Biochem Int 1:1–9.

    CAS  Google Scholar 

  • Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of a nucleotide binding protein. Nature 250:194–199.

    PubMed  CAS  Google Scholar 

  • Rupley JA, Butler L, Gerring M, Hartdegen FJ, Pacoraro R (1967) Studies on the enzymic activity of lysozyme, III. The binding of saccharides. Proc Natl Acad Sci USA 57:1088–1095.

    PubMed  CAS  Google Scholar 

  • Saenger W (1979) Circular hydrogen bonds. Nature 279:343–344.

    CAS  Google Scholar 

  • Salton MRJ (1952) Cell wall of microccus lysodeikticus as the substrate of lysozyme. Nature 170:746–747.

    PubMed  CAS  Google Scholar 

  • Salton MRJ, Ghuysen JM (1959) The structure of di-and tetra-saccharides released from cell walls by lysozyme and streptomyces F1 enzyme and the β(1–4) N-acetyl-hexosaminidase activity of these enzymes. Biochim Biophys Acta 36:552–554.

    PubMed  CAS  Google Scholar 

  • Salton MRJ, Ghuysen JM (1960) Acetylhexosamine compounds enzymically released from Micrococcus Lysodeikticus cell walls. III. The structure of di-and tetra-saccharides released from cell walls by lysozyme and streptomyces F1 enzyme. Biochim Biophys Acta 45:355–363.

    PubMed  CAS  Google Scholar 

  • Sansom MSP, Stuart DI, Acharya KR, Hajdu J, Mclaughlin PJ, Johnson LN (1985) Glycogen phosphorylase b — the molecular anatomy of a large regulatory enzyme. J Mol Struct 123:3–25.

    Google Scholar 

  • Sarma R, Bott R (1977) Crystallographic study of turkey egg-white lysozyme and its complex with a disaccharide. J Mol Biol 113:555–565.

    PubMed  CAS  Google Scholar 

  • Schellman JA, Hawkes RB (1980) Thermodynamic stability of T4 variant lysozymes. In: Jaenicke R (ed) Protein folding. North-Holland Biomedical, Amsterdam, pp 331–334.

    Google Scholar 

  • Schellman JA, Lindorfer M, Hawkes RB, Gruter MG (1981) Mutations and protein stability. Biopolymers 20:1989–1999.

    PubMed  CAS  Google Scholar 

  • Secemski II, Lienhard GE (1971) The role of strain in catalysis by lysozyme. J Am Chem Soc 93:3549–3550.

    PubMed  CAS  Google Scholar 

  • Smith-Gill SJ, Rupley JA, Pincus MR, Carty PR, Scheraga HA (1984) Experimental identification of a theoretically predicted “left-sided” binding mode for (GlcNAc)6 in the active site of lysozyme. Biochemistry 23:993–997.

    PubMed  CAS  Google Scholar 

  • Sotiroudis TG, Oikonomakos NG, Evangelopoulos AE (1978) Phosphorylase b covalently bound to glycogen. Eur J Biochem 88:573–581.

    PubMed  CAS  Google Scholar 

  • Sprang S, Fletterick RJ (1979) The structure of glycogen phosphorylase a at 2.5 Å resolution. J Mol Biol 131:523–551.

    PubMed  CAS  Google Scholar 

  • Sprang SR, Goldsmith EJ, Fletterick RG, Withers SG, Madsen NB (1982) Catalytic site of glycogen phosphorylase: structure of the T-state and specificity for α-D-glucose. Biochemistry 21:5364–5381.

    PubMed  CAS  Google Scholar 

  • Steinrauf LK (1959) Preliminary x-ray data for some new crystalline forms of α-lactoglobulin and hen egg-white lysozyme. Acta Crystallogr 12:77.

    CAS  Google Scholar 

  • Stralfors P, Hiraga A, Cohen P (1985) The protein phosphatases involved in cellular regulation. Eur J Biochem 149:295–303.

    PubMed  CAS  Google Scholar 

  • Street IP, Armstrong CR, Withers SG (1986) Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bondong in the glycogen phosphorylase-glucose complex. Biochemistry 25:6021–6027.

    PubMed  CAS  Google Scholar 

  • Sundanarajan PR, Rao VSR (1969) Studies on the helical conformations of amylose and possible interconversions. Biopolymers 8:313–323.

    Google Scholar 

  • Takagi T, Toda H, Isenura T (1971) Bacterial and mold amylases. In: Boyer PD (ed) The enzymes, 3rd edn, vol 5. Academic, New York, pp 235–271.

    Google Scholar 

  • Takusagawa F, Jacobson RA (1978) The crystal and molecular structure of α-maltose. Acta Crystallogr B 34:213–218.

    Google Scholar 

  • Tanaka I, Tanaka N, Ashida T, Kakudo M (1976) The crystal and molecular structure of phenyl-α-maltoside. Acta Crystallogr B 32:155–160.

    Google Scholar 

  • Thoma JA, Spradlin JE, Dygent S (1971) Plant and animal amylases. In: Boyer PD (ed) The enzymes. Academic, New York, pp 115–189.

    Google Scholar 

  • Titani K, Koide A, Hermann J, Ericsson LH, Kumar S, Wade RD, Walsh KA, Neurath M, Fischer EH (1977) Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc Natl Acad Sci USA 74:4762–4777.

    PubMed  CAS  Google Scholar 

  • Truschuit E, Frommer W, Junge B, Muller L, Schmidt D, Wingender W (1981) Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angew Chem Int Ed Engl 20:744–761.

    Google Scholar 

  • Tsugita A (1971) Phage lysozyme and other lytic enzymes. In: Boyer PA (ed) The enzymes, vol 5. Academic, New York, pp 343–411.

    Google Scholar 

  • Wang JH, Shonka ML, Graves DJ (1965) Influence of carbohydrate on phosphorylase structure and activity I. Activation by preincubation with glycogen. Biochemistry 4:2295–2301.

    Google Scholar 

  • Wanson JC, Drochmans P (1968) Rabbit skeletal muscle glycogen. J Cell Biol 38:130–150.

    PubMed  CAS  Google Scholar 

  • Weaver LH, Grutter MG, Remington SJ, Gray TM, Isaacs NW, Matthews BW (1985) Comparison of goose-type, chicken-type and phage-type lysozymes: changes in three-dimensional structure during evolution. J Mol Evol 21:97–111.

    CAS  Google Scholar 

  • Weber IT, Johnson LN, Wilson KS, Yeates DGR, Wild DL, Jenkins JA (1978) Crystallographic studies on the activity of glycogen phosphorylase b. Nature 274:433–437.

    PubMed  CAS  Google Scholar 

  • Whelan WJ (1986) The initiation of glycogen synthesis. Bioessays 5:136–140.

    PubMed  CAS  Google Scholar 

  • Withers SG, Sykes BD, Madsen NB, Kasvinsky PJ (1979) Identical structural changes induced in glycogen phosphorylase by two non-exclusive allosteric inhibitors. Biochemistry 18:5342–5348.

    PubMed  CAS  Google Scholar 

  • Withers SG, Madsen NM, Sprang SR, Fletterick RJ (1982) Catalytic site of glycogen phosphorylase: structural changes during activation and mechanistic implications. Biochemistry 21:5372–5382.

    PubMed  CAS  Google Scholar 

  • Wolfenden R (1969) Transition state analogues for enzyme catalysis. Nature 223:704–705.

    PubMed  CAS  Google Scholar 

  • Wu HC, Sarko A (1978) The double helical structure of crystalline α-amylose. Carbohydr Res 61:27–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Johnson, L.N., Cheetham, J., McLaughlin, P.J., Acharya, K.R., Barford, D., Phillips, D.C. (1988). Protein-Oligosaccharide Interactions: Lysozyme, Phosphorylase, Amylases. In: Clarke, A.E., Wilson, I.A. (eds) Carbohydrate-Protein Interaction. Current Topics in Microbiology and Immunology, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46641-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46641-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46643-4

  • Online ISBN: 978-3-642-46641-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics