Skip to main content

New Developments in High-Dose Chemotherapy for Breast Cancer

  • Conference paper
Adjuvant Therapy of Primary Breast Cancer VI

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 152))

Abstract

A hint is given that escalation in chemotherapy dose might improve outcome for women with breast cancer by the results of single-arm studies of highdose chemotherapy (HDC) with autologous stem cell rescue (Gradishar et al. 1996). Response rates, and in some instances survival rates, also appear to be superior following a single cycle of myeloablative chemotherapy with bone marrow (BM) or peripheral blood progenitor cells (PBPC) support when compared to lower-dose regimens. In addition, long-term survival (up to 8 years) has been observed in patients who would otherwise have been expected to live a relatively short time (Peters 1995). In response to these promising reports, the use of HDC for the treatment of breast cancer has grown and changed dramatically over the last decade. In the USA, the percentage of autotransplants for breast cancer has increased from 16% to 40% of all autotransplants, so that now breast cancer is the most common indication for this therapy (Antman et al. 1997). The proportion of breast cancer autotransplants for local disease has increased from 7% to about 50% (Antman et al. 1997). The impact this has had on the treatment of breast cancer worldwide is reflected in the number of publications cited in a Medline search of “highdose chemotherapy” and “breast cancer,” which yielded over 700 entries since the first report of HDC for breast cancer in 1982. Although the early mortality from breast cancer HDC procedures was as high as 22%, it is now less than 5% (Antman et al. 1997). Improved control of acute toxicities and supportive care has greatly simplified this treatment. More rapid engraftment with the use of PBPC and the use of hematopoietic growth factors (HGF) and oral prophylactic antibiotics have allowed an increase in the proportion of care given in the outpatient setting (Ayash et al. 1994, Gianni et al. 1997 a), and reduced the costs substantially (Gilbert 1996). These factors in part explain the widespread adoption of HDC as a treatment for breast cancer. More than 95% of autotransplants for breast cancer in the USA have been performed outside of clinical trials (Antman et al. 1997), possibly due to due to a belief that, as stated by one US physician, “the issue is whether patients are randomly assigned to treatment we believe has no hope of cure, or to a treatment that does have a chance of cure” (Rushing 1997). A survey of oncologists conducted at the 1995 meeting of the American Society of Clinical Oncology gives additional insight into the dilemma. Besides the belief that randomized trials were no longer necessary because the phase II data had already provided sufficient data, problems cited for not putting patients on trial included the effort and time necessary and patient preferences (either wanting HDC or fearing it because of the toxicity) (Mathew 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antman K, Ayash L, Elias A, Wheeler C, Hunt M, Eder JP, Teicher BA, Critchlow J, Bibbo J, Schnipper LE et al (1992) A phase II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy [see comments]. J Clin Oncol 10:102–110

    PubMed  CAS  Google Scholar 

  • Antman KH, Rowlings PA, Vaughan WP, Pelz CJ, Fay JW, Fields KK, Freytes CO, Gale RP, Hillner BE, Holland HK, Kennedy MJ, Klein JP, Lazarus HM, McCarthy PL Jr, Saez R, Spitzer G, Stadtmauer EA, Williams SF, Wolff S, Sobocinski KA, Armitage JO, Horowitz MM (1997) High-dose chemotherapy with autologous hematopoietic stem-cell support for breast cancer in North America. J Clin Oncol 15:1870–1879

    PubMed  CAS  Google Scholar 

  • Arriagada R, Le Chevalier T, Pignon JP, Riviere A, Monnet I, Chomy P, Tuchais C, Tarayre M, Ruffie P (1993) Initial chemotherapeutic doses and survival in patients with limited small-cell lung cancer. N Engl J Med 329:1848–1852

    Article  PubMed  CAS  Google Scholar 

  • Ashworth TR (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14:146

    Google Scholar 

  • Ayash LJ, Elias A, Wheeler C, Reich E, Schwartz G, Mazanet R, Tepler I, Warren D, Lynch C, Gonin R, Schnipper L, Frei E III, Antman K (1994) Double dose-intensive chemotherapy with autologous marrow and peripheral-blood progenitor-cell support for metastatic breast cancer: a feasibility study. J Clin Oncol 12:37–44

    PubMed  CAS  Google Scholar 

  • Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklenar I, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton L (1996) Phase II study of weekly intravenous recombinant humanized anti-p185 HER 2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744

    PubMed  CAS  Google Scholar 

  • Basser RL, To BL, Begley CG, Juttner CA, Maher DW, Szer J, Cebon J, Collins JP, Russell I, Olver I, Gill PG, Fox RM, Sheridan WP, Green MD (1995) Adjuvant treatment of high-risk breast cancer using multi-cycle high-dose chemotherapy and filgrastim-mobilized peripheral blood progenitor cells. Clin Cancer Res 1:715–721

    PubMed  CAS  Google Scholar 

  • Basser RL, To LB, Begley CG, Maher D, Juttner C, Cebon J, Mansfield R, Olver I, Duggan G, Szer J, Collins J, Schwartz B, Marty J, Menchaca D, Sheridan WP, Fox RM, Green MD (1998) Rapid hematopoietic recovery after multicycle high-dose chemotherapy: enhancement of filgrastim-induced progenitor cell mobilization by recombinant human stem cell factor. J Clin Oncol (in press)

    Google Scholar 

  • Begley CG, Basser R, Mansfield R, Thomson B, Parker W, Layton J, To B, Sheridan WP, Fox RM, Green MD (1997) Enhanced levels and clonogenic capacity of blood progenitor cells following administration of stem cell factor and filgrastim to humans. Blood 90:3378–3389

    PubMed  CAS  Google Scholar 

  • Berger U, Mansi JL, Wilson P, Coombes RC (1987) Detection of estrogen receptor in bone marrow from patients with metastatic breast cancer. J Clin Oncol 5:1779–1782

    PubMed  CAS  Google Scholar 

  • Berger U, Bettelheim R, Mansi JL, Easton D, Coombes RC, Neville AM (1988) The relationship between micrometastases in the bone marrow, histopathologic features of the primary tumor in breast cancer and prognosis. Am J Clin Pathol 90:1–6

    PubMed  CAS  Google Scholar 

  • Bezwoda WR, Seymour L, Dansey RD (1995) High-dose chemotherapy with hematopoietic rescue as primary treatment for metastatic breast cancer: a randomized trial. J Clin Oncol 13:2483–2489

    PubMed  CAS  Google Scholar 

  • Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    Article  PubMed  CAS  Google Scholar 

  • Brügger W, Bross KJ, Glatt M, Weber F, Mertelsmann R, Kanz L (1994) Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors [see comments]. Blood 83:636–640

    PubMed  Google Scholar 

  • Burchill SA, Bradbury MF, Pittman K, Southgate J, Smith B, Selby P (1995) Detection of epithelial cancer cells in peripheral blood by reverse transcriptase-polymerase chain reaction. Br J Cancer 71:278–281

    Article  PubMed  CAS  Google Scholar 

  • Ceci G, Franciosi V, Nizzoli R, De Lisi V, Lottici R, Boni C, Di Blasio B, Passalacqua R, Guazzi A, Cocconi G (1988) The value of bone marrow biopsy in breast cancer at time of diagnosis. A prospective study. Cancer 61:96–98

    Article  PubMed  CAS  Google Scholar 

  • Chevillard S, Muller A, Levalois C, Laine-Bidron C, Viehl P, Magdelenat H, (1996) Reverse transcription-polymerase chain reaction (RT-PCR) assays of estrogen and progesterone receptors in breast cancer. Breast Cancer Res Treat 41:81–89

    Article  PubMed  CAS  Google Scholar 

  • Crump M, Goss PE, Prince M, Girouard C (1996) Outcome of extensive evaluation before adjuvant therapy in women with breast cancer and 10 or more positive axillary lymph nodes. J Clin Oncol 14:66–69

    PubMed  CAS  Google Scholar 

  • Datta YH, Adams PT, Drobyski WR, Ethier SP, Terry VH, Roth MS (1994) Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 12:475–482

    PubMed  CAS  Google Scholar 

  • De Vita VT Jr (1993) Principles of chemotherapy. In: De Vita VT Jr, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology. Lippincott, Philadelphia, pp 276–292

    Google Scholar 

  • De Vita VT Jr, Hubbard SM, Longo DL (1987) The chemotherapy of lymphomas: looking back, moving forward — the Richard and Hinda Rosenthal Foundation Award lecture. Cancer Res 47:5810–5824

    PubMed  Google Scholar 

  • To LB, Haylock DN, Simmons PJ, Juttner CA (1997) The biology and clinical uses of blood stem cells. Blood 89:2233–2258

    PubMed  CAS  Google Scholar 

  • Douglas AM, Goss GA, Sutherland RL, Hilton DJ, Berndt MC, Nicola NA, Begley CG (1997) Expression and function of members of the cytokine receptor superfamily on breast cancer cells. Oncogene 14:661–669

    Article  PubMed  CAS  Google Scholar 

  • Douglas AM, Grant SL, Goss GA, Clouston DR, Sutherland RL, Begley CG (1998) Oncostatin M induces the differentiation of breast cancer cells. Int J Cancer 75:64–73

    Article  PubMed  CAS  Google Scholar 

  • Eaton MC, Hardingham JE, Kotasek D, Dobrovic A (1997) Immunobead RT-PCR: a sensitive method for detection of circulating tumor cells. Biotechniques 22:100–105

    PubMed  CAS  Google Scholar 

  • Eddy DM (1992) High-dose chemotherapy with autologous bone marrow transplantation for the treatment of metastatic breast cancer [see comments]. J Clin Oncol 10:657–670 (Erratum in J Clin Oncol 10:1655-1658)

    PubMed  CAS  Google Scholar 

  • Fox SB, Leek RD, Bliss J, Mansi JL, Gusterson B, Gatter KC, Harris AL (1997) Association of tumor angiogenesis with bone marrow micrometastases in breast cancer patients. J Natl Cancer Inst 89:1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Franklin WA, Shpall EJ, Archer P, Johnston CS, Garza-Williams S, Hami L, Bitter MA, Bast RC, Jones RB (1996) Immunocytochemical detection of breast cancer cells in marrow and peripheral blood of patients undergoing high dose chemotherapy with autologous stem cell support. Breast Cancer Res Treat 41:1–13

    Article  PubMed  CAS  Google Scholar 

  • Franklin WA, Pflaumer SM, Jones RB, Hami L, Garza-Williams S, Turner SA, Davis HW, Martinez C, Bearman S, Cagnoni P, Ross M, Shpall EJ (1997) The addition of stem cell factor (SCF) to filgrastim (r-metHuG-CSF) for mobilization of PBPC does not enhance mobilization of tumor cells into the peripheral blood of breast cancer patients. Proc Am Soc Clin Oncol 16:118 a

    Google Scholar 

  • Funke I, Schraut W (1998) Meta-analyses of studies on bone marrow micrometastases: an independent prognostic impact remains to be substantiated. J Clin Oncol 16:557–566

    PubMed  CAS  Google Scholar 

  • Garcia-Carbonero R, Hidalgo M, Paz-Ares L, Calzas J, Gomez H, Guerra JA, Hitt R, Hornedo J, Colmer R, Cortes-Funes H (1997) Patient selection in high-dose chemotherapy trials: relevance in high-risk breast cancer. J Clin Oncol 15:3178–3184

    PubMed  CAS  Google Scholar 

  • Gianni AM, Siena S, Bregni M, Lombardi F, Gandola L, Valagussa P, Bonadonna G (1991) Prolonged disease-free survival after high-dose sequential chemo-radiotherapy and haemopoietic autologous transplantation in poor prognosis Hodgkin’s disease. Ann Oncol 2:645–653

    PubMed  CAS  Google Scholar 

  • Gianni AM, Tarella C, Bregni M, Siena S, Lombardi F, Gandola L, Caracciolo D, Bonadonna G, Boccadoro M, Pileri A (1994) High-dose sequential chemoradiotherapy, a widely applicable regimen, confers survival benefit to patients with high-risk multiple myeloma. J Clin Oncol 12:503–509

    PubMed  CAS  Google Scholar 

  • Gianni AM, Siena S, Bregni M, Di Nicola M, Orefice S, Cusumano F, Salvadori B, Luini A, Greco M, Zucali R, Rilke F, Zambetti M, Valagussa P, Bonadonna G (1997 a) Efficacy, toxicity, and applicability of high-dose sequential chemotherapy as adjuvant treatment in operable breast cancer with 10 or more involved axillary nodes: five-year results. J Clin Oncol 15:2312–2321

    PubMed  CAS  Google Scholar 

  • Gianni AM, Bregni M, Siena S, Brambilla C, Di Nicola M, Lombardi F, Gandola L, Tarella C, Pileri A, Ravagnani F, Valagussa P, Bonadonna G, Stern AC, Magni M, Caracciolo D (1997 b) High-dose chemotherapy and autologous bone marrow transplantation compared with MACOP-B in aggressive B-cell lymphoma. N Engl J Med 336:1290–1297

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CJ (1996) Peripheral blood progenitor cell transplantation for breast cancer: phar-macoeconomic considerations. Pharmacotherapy 16:101 S–108 S

    CAS  Google Scholar 

  • Gradishar WJ, Tallman MS, Abrams JS (1996) High-dose chemotherapy for breast cancer. Ann Intern Med 125:599–604

    PubMed  CAS  Google Scholar 

  • Gugliotta P, Botta G, Bussolati G (1990) Immunocytochemical detection of tumour markers in bone metastases from carcinoma of the breast. Histochem J 13:953–959

    Article  Google Scholar 

  • Kotasek D, Sage RE, Dale BM, Norman JE, Bolton A (1994) Dose intensive therapy with autologous blood stem cell transplantation in breast cancer. Aust N Z J Med 24:288–295

    Article  PubMed  CAS  Google Scholar 

  • Krismann M, Todt B, Schröder J, Gareis D, Müller KM, Seeber S, Schütte J (1995) Low specificity of cytokeratin 19 reverse transcriptase-polymerase chain reaction analyses for detection of hematogenous lung cancer dissemination. J Clin Oncol 13:2769–2775

    PubMed  CAS  Google Scholar 

  • Lagrange M, Ferrero JM, Lagrange JL, Machiavello JC, Monticelli J, Bayle C, Creisson A, Namer M, Thyss A, Bourcier C, Gioanni J, Schneider M (1997) Non-specifically labelled cells that simulate bone marrow metastases in patients with non-metastatic breast cancer. J Clin Pathol 50:206–211

    Article  PubMed  CAS  Google Scholar 

  • Luppi M, Morselli M, Bandieri E, Federico M, Marasca R, Barozzi P, Ferrari MG, Savarino M, Frassoldati A, Torelli G (1996) Sensitive detection of circulating breast cancer cells by reverse-transcriptase polymerase chain reaction of maspin gene. Ann Oncol 7:619–624

    PubMed  CAS  Google Scholar 

  • Mansi JL, Berger U, Easton D, McDonnell T, Redding WH, Gazet JC, McKinna A, Powles TJ, Coombes RC (1987) Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J [Clin Res] 295:1093–1096

    Article  CAS  Google Scholar 

  • Mathew J (1995) NCI survey explores the M.D.’s perspective on ABMT trials. J Natl Cancer Inst 87:1510–1511

    Article  Google Scholar 

  • Naume B, Borgen E, Beiske K, Herstad TK, Ravnas G, Renolen A, Funderud S, Kvalheim G (1997) Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother 6:103–114

    Article  PubMed  CAS  Google Scholar 

  • Osborne MP, Rosen PP (1994) Detection and management of bone marrow micrometastases in breast cancer. Oncology 8:25–31

    PubMed  CAS  Google Scholar 

  • Pantel K, Moss TJ (1996) First international ISHAGE symposium on minimal residual cancer. J Hematother 5:511–517

    Article  PubMed  CAS  Google Scholar 

  • Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G (1993) Differential expression of proliferation-associated molecules in individual micrometastic carcinoma cells. J Natl Cancer Inst 85:1419–1424

    Article  PubMed  CAS  Google Scholar 

  • Passos-Coelho JL, Ross AA, Moss TJ, Davis JM, Huelskamp A-M, Noga SJ, Davidson NE, Kennedy MJ (1995) Absence of breast cancer cells in a single-day peripheral blood progenitor cell collection after priming with cyclophosphamide and granulocyte-macro-phage colony-stimulating factor. Blood 85:1138–1143

    PubMed  CAS  Google Scholar 

  • Peters WP (1995) High-dose chemotherapy with autologous bone marrow transplantation for the treatment of breast cancer: yes (Review) Important Adv Oncol 215-230

    Google Scholar 

  • Peters WP, Eder JP, Henner WD, Schryber S, Wilmore D, Finberg R, Scoenfeld D, Bast R, Gargone B, Antman K, Anderson J, Anderson K, Kruskall MS, Schnipper L, Frei E III (1986) High-dose combination alkylating agents with autologous bone marrow support: a phase I trial. J Clin Oncol 4:646–654

    PubMed  CAS  Google Scholar 

  • Peters WP, Shpall EJ, Jones RB, Olsen GA, Bast RC, Gockerman JP, Moore JO (1988) Highdose combination alkylating agents with bone marrow support as initial treatment for metastatic breast cancer. J Clin Oncol 6:1368–1376

    PubMed  CAS  Google Scholar 

  • Peters WP, Jones RB, Vredenburgh J, Shpall EJ, Hussein A, Elkordy M, Rubin P, Ross M, Berry D (1997) A large, prospective, randomized trial of high-dose combination alkylating agents (CPB) with autologous cellular support (ABMS) as consolidation for patients with metastatic breast cancer achieving complete remission after intensive doxorubicinbased induction therapy (AFM) (Abstr.) Proc Am Soc Clin Oncol 15:121

    Google Scholar 

  • Redding WH, Coombes RC, Monaghan P, Clink HM, Imrie SF, Dearnaley DP, Ormerod MG, Sloane JP, Gazet JC, Powles TJ et al (1983) Detection of micrometastases in patients with primary breast cancer. Lancet 2:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Rodenhuis S, Richel DJ, Baars JW, van der Wall E, Schornagel JH, Schaake-Koning C, Rutgers E (1997) A randomized phase II study of high-dose chemotherapy in high-risk breast cancer. Proceedings of 2 nd International Symposium: Changes in the treatment of breast cancer, June 1–2, Madrid, pp 101-105

    Google Scholar 

  • Ross AA, Cooper BW, Lazarus HM, Mackay W, Moss TJ, Ciobanu N, Talhnan MS, Kennedy MJ, Davidson NE, Sweet D et al (1993) Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 82:2605–2610

    PubMed  CAS  Google Scholar 

  • Rushing DA (1997) High-dose chemotherapy for breast cancer (Letter). Ann Intern med 126:917

    PubMed  CAS  Google Scholar 

  • Schlimok G, Funke I, Holzmann B, Gottlinger G, Schmidt G, Hauser H, Swierkot S, Warnecke HH, Schneider B, Koprowski H et al (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci USA 84:8672–8676

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld A, Luqmani Y, Smith D, O’Reilly S, Shousha S, Sinnett HD, Coombes RC (1994) Detection of breast cancer micrometastases in axillary lymph nodes by using polymerase chain reaction. Cancer Res 54:2986–2990

    PubMed  CAS  Google Scholar 

  • Shea TC, Mason JR, Storniolo AM, Newton B, Breslin M, Mullen M, Ward DM, Miller L, Christian M, Taetle R (1992) Sequential cycles of high-dose carboplatin administered with recombinant human granulocyte-macrophage colony-stimulating factor and repeated infusions of autologous peripheral blood progenitor cells: a novel and effective method for delivering multiple courses of dose-intensive therapy. J Clin Oncol 10:464–473

    PubMed  CAS  Google Scholar 

  • Sloane JP, Ormerod MG, Neville AM (1980) Potential pathological application of immunocytochemical methods to the detection of micrometastases. Cancer Res 40:3079–3082

    PubMed  CAS  Google Scholar 

  • Stewart PS (1982) Autologous bone marrow transplantation in metastatic breast cancer. Breast Cancer Res Treat 2:85–92

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Battifora H (1987) Keratins versus epithelial membrane antigen in tumor diagnosis: an immunohistochemical comparison of five monoclonal antibodies. Hum Pathol 18:728–734

    Article  PubMed  CAS  Google Scholar 

  • Traweek ST, Liu J, Battifora H (1993) Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction. Am J Pathol 142:1111–1118

    PubMed  CAS  Google Scholar 

  • Ung O, Langlands AO, Barraclough B, Boyages J (1995) Combined chemotherapy and radiotherapy for patients with breast cancer and extensive nodal involvement. J Clin Oncol 13:435–443

    PubMed  CAS  Google Scholar 

  • Zippelius A, Kufer P, Honold G, Köllermann MW, Oberneder R, Schlimok G, Rithmüller G, Pantel K (1997) Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastic epithelial cancer cells in bone marrow. J Clin Oncol 15:2701–2708

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Basser, R.L. (1998). New Developments in High-Dose Chemotherapy for Breast Cancer. In: Senn, HJ., Gelber, R.D., Goldhirsch, A., Thürlimann, B. (eds) Adjuvant Therapy of Primary Breast Cancer VI. Recent Results in Cancer Research, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45769-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45769-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45771-5

  • Online ISBN: 978-3-642-45769-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics