Skip to main content

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1082 Accesses

Abstract

The main role of the immune system is to protect against infections caused by invading pathogens. The adaptive immune system is particularly important for protection against repeated exposure to pathogens, due to its ability to memorize antigens during an initial infection and then respond rapidly and strongly to subsequent antigen challenges from the same or a related pathogen. This system forms immunological memory. Most epigenetic studies in immunology have focused on analysis of differentiation of CD4 T subsets, key players in the adaptive immune system. However, the relationship between immunological memory and epigenetics has not been as well studied. In recent years, with the advancement of technology such as ChIP-seq or RNA-seq methods, the importance of epigenetic mechanisms in immunological memory is becoming apparent. This review outlines our understanding of how CD4 T cells acquire and maintain function during or after differentiation, using Th2 cells as a model. In addition, we summarize the general characteristics of memory T cells from the perspective of epigenetics and discuss the possibility of clinical application of epigenetic studies in immunology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amsen D, Spilianakis CG, Flavell RA (2009) How are T(H)1 and T(H)2 effector cells made? Curr Opin Immunol 21:153–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Araki Y, Fann M, Wersto R et al (2008) Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J Immunol 180:8102–8108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Araki Y, Wang Z, Zang C et al (2009) Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30:912–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  • Christodouleas JP, Forrest RD, Ainsley CG et al (2011) Short-term and long-term health risks of nuclear-power-plant accidents. N Engl J Med 364:2334–2341

    Article  CAS  PubMed  Google Scholar 

  • Cuddapah S, Barski A, Zhao K (2010) Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol 22:341–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dispirito JR, Shen H (2010) Histone acetylation at the single-cell level: a marker of memory CD8+ T cell differentiation and functionality. J Immunol 184:4631–4636

    Article  CAS  PubMed  Google Scholar 

  • Dutton RW, Bradley LM, Swain SL (1998) T cell memory. Annu Rev Immunol 16:201–223

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Iwamura C, Kuwahara M et al (2011) Eomesodermin controls interleukin-5 production in memory T helper 2 cells through inhibition of activity of the transcription factor GATA3. Immunity 35:733–745

    Article  CAS  PubMed  Google Scholar 

  • Fann M, Godlove JM, Catalfamo M et al (2006) Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8(+) T-cell response. Blood 108:3363–3370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao R, Cao B, Hu Y et al (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Ho IC, Tai TS, Pai SY (2009) GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9:125–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horiguchi S, Tanaka Y, Uchida T et al (2008) Seasonal changes in antigen-specific T-helper clone sizes in patients with Japanese cedar pollinosis: a 2-year study. Clin Exp Allergy 38:405–412

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi S, Onodera A, Hosokawa H et al (2011) Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3. J Immunol 186:6378–6389

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa H, Tanaka T, Suzuki Y et al (2013) Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity. Proc Natl Acad Sci USA 110:4691–4696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hozumi N, Tonegawa S (1976) Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci USA 73:3628–3632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwamura C, Shinoda K, Endo Y et al (2012) Regulation of memory CD4 T-cell pool size and function by natural killer T cells in vivo. Proc Natl Acad Sci USA 109:16992–16997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaech SM, Hemby S, Kersh E et al (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111:837–851

    Article  CAS  PubMed  Google Scholar 

  • Kalisky T, Blainey P, Quake SR (2011) Genomic analysis at the single-cell level. Annu Rev Genet 45:431–445

    Article  CAS  PubMed  Google Scholar 

  • Kanno Y, Vahedi G, Hirahara K et al (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30:707–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwahara M, Yamashita M, Shinoda K et al (2012) The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-beta and suppresses T(H)2 differentiation. Nat Immunol 13:778–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Memish ZA, Zumla AI, Al-Hakeem RF et al (2013) Family cluster of middle east respiratory syndrome coronavirus infections. N Engl J Med 368(26):2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mirabella F, Baxter EW, Boissinot M et al (2010) The human IL-3/granulocyte-macrophage colony-stimulating factor locus is epigenetically silent in immature thymocytes and is progressively activated during T cell development. J Immunol 184:3043–3054

    Article  CAS  PubMed  Google Scholar 

  • Mohan M, Herz HM, Shilatifard A (2012) SnapShot: Histone lysine methylase complexes. Cell 149(498–498):e1

    PubMed  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  • Mueller SN, Gebhardt T, Carbone FR et al (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161

    Article  CAS  PubMed  Google Scholar 

  • Nakata Y, Brignier AC, Jin S et al (2010) c-Myb, Menin, GATA-3, and MLL form a dynamic transcription complex that plays a pivotal role in human T helper type 2 cell development. Blood 116:1280–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama T, Yamashita M (2009) Critical role of the Polycomb and Trithorax complexes in the maintenance of CD4 T cell memory. Semin Immunol 21:78–83

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Yamashita M (2010) The TCR-mediated signaling pathways that control the direction of helper T cell differentiation. Semin Immunol 22:303–309

    Article  CAS  PubMed  Google Scholar 

  • Northrop JK, Thomas RM, Wells AD et al (2006) Epigenetic remodeling of the IL-2 and IFN-gamma loci in memory CD8 T cells is influenced by CD4 T cells. J Immunol 177:1062–1069

    CAS  PubMed  Google Scholar 

  • Northrup DL, Zhao K (2011) Application of ChIP-Seq and related techniques to the study of immune function. Immunity 34:830–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onodera A, Yamashita M, Endo Y et al (2010) STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. J Exp Med 207:2493–2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pai SY, Truitt ML, Ho IC (2004) GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci USA 101:1993–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12:509–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Onodera A, Hosokawa H et al (2013) Genome-wide gene expression profiling revealed a critical role for GATA3 in the maintenance of the Th2 cell identity. PLoS One 8:e66468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M et al (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745

    Article  CAS  PubMed  Google Scholar 

  • Schuettengruber B, Martinez AM, Iovino N et al (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814

    Article  CAS  PubMed  Google Scholar 

  • Seder RA, Ahmed R (2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 4:835–842

    Article  CAS  PubMed  Google Scholar 

  • Shinoda K, Tokoyoda K, Hanazawa A et al (2012) Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proc Natl Acad Sci USA 109:7409–7414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Iwamura C, Shinoda K et al (2010) Polycomb group gene product Ring1B regulates Th2-driven airway inflammation through the inhibition of Bim-mediated apoptosis of effector Th2 cells in the lung. J Immunol 184:4510–4520

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tokoyoda K, Hauser AE, Nakayama T et al (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10:193–200

    Article  CAS  PubMed  Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    Article  CAS  PubMed  Google Scholar 

  • Weng NP, Araki Y, Subedi K (2012) The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol 12:306–315

    Article  CAS  PubMed  Google Scholar 

  • Wilson CB, Rowell E, Sekimata M (2009) Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 9:91–105

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita M, Shinnakasu R, Nigo Y et al (2004a) Interleukin (IL)-4-independent maintenance of histone modification of the IL-4 gene loci in memory Th2 cells. J Biol Chem 279:39454–39464

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Ukai-Tadenuma M, Miyamoto T et al (2004b) Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem 279:26983–26990

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Hirahara K, Shinnakasu R et al (2006) Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24:611–622

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Kuwahara M, Suzuki A et al (2008) Bmi1 regulates memory CD4 T cell survival via repression of the Noxa gene. J Exp Med 205:1109–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zediak VP, Johnnidis JB, Wherry EJ et al (2011a) Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. J Immunol 186:2705–2709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zediak VP, Wherry EJ, Berger SL (2011b) The contribution of epigenetic memory to immunologic memory. Curr Opin Genet Dev 21:154–159

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Onodera, A., Tumes, D.J., Nakayama, T. (2014). Epigenetic Control of Immune T Cell Memory. In: Bonifer, C., Cockerill, P. (eds) Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45198-0_14

Download citation

Publish with us

Policies and ethics