Skip to main content

The Nuclear Energy Density Functional Formalism

  • Chapter
The Euroschool on Exotic Beams, Vol. IV

Part of the book series: Lecture Notes in Physics ((LNP,volume 879))

Abstract

The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g′,g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. “mean-field”, derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g′,g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notion of “controlled” description refers to the capability of estimating uncertainties of various origins in the theoretical method employed.

  2. 2.

    In the sd shell for example, it is necessary to (slightly) refit about 30 combinations of two-body matrix elements in order to reach about 140 keV root mean square error on nearly 600 pieces of spectroscopic data [42].

  3. 3.

    The adjective “diagrammatic” refers to many-body methods relying on the use of Feynman or Goldstone diagrams.

  4. 4.

    I.e. the density-dependence of the effective Hamilton operator in the traditional formulation.

  5. 5.

    Approximations such as the quasi-particle random phase approximation or the Schroedinger equation based on a collective (e.g. Bohr) Hamiltonian are only mentioned in passing; see Sect. 7.5.7.

  6. 6.

    For certain symmetries, e.g. SO(3), the phase α collects in fact several angles. See Table 7.1 for two relevant examples.

  7. 7.

    Although it can be done rigorously, we do not state explicitly here the definition of the norm of κ.

  8. 8.

    Coulomb and center-of-mass correction contributions are omitted here for simplicity.

  9. 9.

    Proton/neutron mixing is presently ignored such that \(\rho^{g' g} (\vec{r} \sigma\tau ,\vec{r} ' \sigma' \tau')=\kappa^{g' g} (\vec{r} \sigma\tau ,\vec{r} ' \sigma' \tau')=0\) for ττ′. This does not correspond to the most general situation [86].

  10. 10.

    In the case of the present toy functional, the fulfilment of Eq. (7.16) under Galilean transformations does not correlate any of the couplings.

  11. 11.

    The present analysis can be easily extended to trilinear functional terms and effective three-body matrix elements.

  12. 12.

    This encompasses the intermediate case where the EDF kernel is computed as the matrix elements of a density-dependent effective “Hamiltonian”. Indeed, in such a case no exchange or pairing term corresponding to the density dependence of the effective vertex appears in the EDF kernel.

  13. 13.

    One way to ensure that the minimization is indeed performed within the manyfold of product states consists of adding an additional Lagrange constraint requiring that the generalized density matrix [51] ℛ remains idempotent.

  14. 14.

    Expressions are given here for linear constraints although practical calculations often rely on quadratic constraints [107].

  15. 15.

    Depending on the isospin projection τ considered, λ=λ n or λ p .

  16. 16.

    It is specific to the EDF method to implicitly account for correlations via the functional character of E[g,g]. As such, one-nucleon separation energies \(E_{k}^{|g|\pm}\) obtained through SR-EDF calculations can be seen as effective centroids of a more fragmented underlying spectrum generated via a theory that explicitly accounts for those correlations.

  17. 17.

    Inaccuracies associated with the quality of empirical EDF parametrizations are responsible for quantitative discrepancies while the present discussion relates to qualitative differences that are built in on purpose.

  18. 18.

    In view of Eq. (7.50), it thus appears more justified to use eigenvalues of h (g) as ESPEs rather than its diagonal matrix elements in the basis diagonalizing ρ gg, i.e. the so-called canonical basis, as it is often done by practitioners, e.g. see Ref. [57].

  19. 19.

    Such a procedure can be extended to any subgroup of 𝒢.

  20. 20.

    Equation (7.52) can be recovered by expressing matrices \(\mathbf{S}_{k}^{(g) \pm}\) in a spherical basis p=nπjmτ and by working out how such matrices transform under the rotation of |Φ (g)〉 and \(| \varPhi^{(g)}_{k} \rangle\).

  21. 21.

    If \(\mathbf{h}^{(\rho _{\lambda\mu} 0)}\) breaks parity, one further needs to extract the component belonging to the trivial Irreps of C i , i.e. the inversion center group. Indeed, restoring spherical symmetry does not ensure that parity is a good quantum number, e.g. a j=3/2 single-particle state can be a linear combination of d 3/2 and p 3/2 states. Proceeding to such an extraction would deliver a one-body field that is block-diagonal with respect to parity π as well.

  22. 22.

    Practically speaking, Eqs. (7.53a), (7.53b), (7.54) are particularly trivial to implement in numerical codes that expend deformed solutions out of a spherical, e.g. harmonic oscillator, basis.

  23. 23.

    It is important to underline at this point that the notion of “deformation” differs depending on the angular momentum of the targeted many-body state. This is due to the fact that a symmetry-conserving state with angular momentum J does display non-zero multipole moments of the density for λ≤2J [75]. For example, having a reference state with non-zero quadrupole and hexadecapole moments does not characterize a breaking of rotational symmetry if one means to describe a J=2 state. In such a case, one must check multipoles with λ>4 (or any odd multipole) to state whether rotational symmetry is broken or not. It happens that product states of the Bogoliubov type usually generate non-zero multipole moments of all (e.g. even) multipolarities as soon as they display a non-zero collective quadrupole moment. As such, they break rotational symmetry independent of the angular momentum of the good-symmetry state one is eventually after.

  24. 24.

    Of course, the fact that the neutron or proton number is magic is not known a priori but is based on a posteriori observations and experimental facts. In particular, the fact that traditional magic numbers, i.e. N,Z=2,8,20,28,50,82,126, remain as one goes to very isospin-asymmetric nuclei is the subject of intense on-going experimental and theoretical investigations [10].

  25. 25.

    The scheme can be extended to a set of local densities or to the full density matrix.

  26. 26.

    We take advantage of property (7.16) to fix one of the two phases involved to zero.

  27. 27.

    Such a mixing does not appear in the case of the U(1) group given that its Irreps are of dimension 1.

  28. 28.

    The overlap kernel being analytical over the complex plane, it is straightforward to prove that 𝒩N=0 for N≤0.

References

  1. N. Kalantar-Nayestanaki et al., Rep. Prog. Phys. 75, 016301 (2012)

    ADS  Google Scholar 

  2. A. Nogga, H. Kamada, W. Glöckle, Phys. Rev. Lett. 85, 944 (2000)

    ADS  Google Scholar 

  3. A. Nogga, S.K. Bogner, A. Schwenk, Phys. Rev. C 70, 061002 (2004)

    ADS  Google Scholar 

  4. A. Faessler, S. Krewald, G.J. Wagner, Phys. Rev. C 11, 2069 (1975)

    ADS  Google Scholar 

  5. J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)

    ADS  MATH  MathSciNet  Google Scholar 

  6. W. Zuo et al., Nucl. Phys. A 706, 418 (2002)

    ADS  MATH  Google Scholar 

  7. F. Coester et al., Phys. Rev. C 1, 769 (1970)

    ADS  Google Scholar 

  8. R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990)

    ADS  Google Scholar 

  9. A. Sonzogni, NNDC Chart of Nuclides (2007). http://www.nndc.bnl.gov/chart/

  10. O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008)

    ADS  Google Scholar 

  11. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    ADS  Google Scholar 

  12. M. Fukuda et al., Phys. Lett. B 268, 339 (1991)

    ADS  MathSciNet  Google Scholar 

  13. P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)

    ADS  Google Scholar 

  14. A.S. Jensen et al., Rev. Mod. Phys. 76, 215 (2004)

    ADS  Google Scholar 

  15. B. Blank, M. Ploszajczak, Rep. Prog. Phys. 71, 046301 (2008)

    ADS  Google Scholar 

  16. M. Pfützner et al., Rev. Mod. Phys. 84, 567 (2012)

    ADS  Google Scholar 

  17. K. Blaum, Phys. Rep. 425, 1 (2006)

    ADS  Google Scholar 

  18. B. Schlitt et al., Hyperfine Interact. 99, 117 (1996)

    ADS  Google Scholar 

  19. M. Wang et al., J. Phys. Conf. Ser. 312, 092064 (2011)

    ADS  Google Scholar 

  20. I.S. Towner, J.C. Hardy, Rep. Prog. Phys. 73, 046301 (2010)

    ADS  Google Scholar 

  21. V. Zagrebaev, A. Karpov, W. Greiner, J. Phys. Conf. Ser. 420, 012001 (2013)

    ADS  Google Scholar 

  22. P. Möller et al., At. Data Nucl. Data Tables 59, 185 (2002)

    Google Scholar 

  23. G. Royer, C. Gautier, Phys. Rev. C 73, 067302 (2006)

    ADS  Google Scholar 

  24. J.L. Friar et al., Phys. Lett. B 311, 4 (1988)

    ADS  Google Scholar 

  25. A. Nogga et al., Phys. Lett. B 409, 19 (1997)

    ADS  Google Scholar 

  26. S.C. Pieper, R.B. Wiringa, J. Carlson, Phys. Rev. C 70, 054325 (2004)

    ADS  Google Scholar 

  27. S. Pastore et al., arXiv:1302.5091 (2013)

  28. P. Navratil et al., J. Phys. G 36, 083101 (2009)

    ADS  Google Scholar 

  29. E. Epelbaum et al., Phys. Rev. Lett. 109, 252501 (2012)

    ADS  Google Scholar 

  30. G. Hagen et al., Phys. Rev. C 82, 034330 (2010)

    ADS  Google Scholar 

  31. S. Binder et al., arXiv:1211.4748 (2012)

  32. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)

    ADS  Google Scholar 

  33. A. Cipollone, C. Barbieri, P. Navratil, arXiv:1303.4900 (2013)

  34. K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. Lett. 106, 222502 (2011)

    ADS  Google Scholar 

  35. H. Hergert et al., Phys. Rev. C 87, 034307 (2013)

    ADS  Google Scholar 

  36. V. Somà, T. Duguet, C. Barbieri, Phys. Rev. C 84, 064317 (2011)

    ADS  Google Scholar 

  37. V. Somà, C. Barbieri, T. Duguet, Phys. Rev. C 87, 011303 (2013)

    ADS  Google Scholar 

  38. H. Hergert et al., Phys. Rev. Lett. 110, 242501 (2013)

    ADS  Google Scholar 

  39. A. Signoracci, T. Duguet, G. Hagen, unpublished (2013)

    Google Scholar 

  40. E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005)

    ADS  Google Scholar 

  41. D.J. Dean et al., Prog. Part. Nucl. Phys. 53, 419 (2004)

    ADS  Google Scholar 

  42. B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)

    ADS  Google Scholar 

  43. A.P. Zuker, Phys. Rev. Lett. 90, 042502 (2003)

    ADS  Google Scholar 

  44. T. Otsuka et al., Phys. Rev. Lett. 105, 032501 (2010)

    ADS  Google Scholar 

  45. J.D. Holt et al., J. Phys. G 39, 085111 (2012)

    ADS  MathSciNet  Google Scholar 

  46. J.D. Holt, A. Schwenk, Eur. Phys. J. A 49, 39 (2013)

    ADS  Google Scholar 

  47. J.D. Holt, J. Engel, Phys. Rev. C 87, 064315 (2013)

    ADS  Google Scholar 

  48. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    ADS  Google Scholar 

  49. T. Niksic, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011)

    ADS  Google Scholar 

  50. J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972)

    ADS  Google Scholar 

  51. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)

    Google Scholar 

  52. L.M. Robledo, Int. J. Mod. Phys. E 16, 337 (2007)

    ADS  Google Scholar 

  53. J. Dobaczewski et al., Phys. Rev. C 76, 054315 (2007)

    ADS  Google Scholar 

  54. D. Lacroix, T. Duguet, M. Bender, Phys. Rev. C 79, 044318 (2009)

    ADS  Google Scholar 

  55. M. Bender, T. Duguet, D. Lacroix, Phys. Rev. C 79, 044319 (2009)

    ADS  Google Scholar 

  56. T. Duguet et al., Phys. Rev. C 79, 044320 (2009)

    ADS  Google Scholar 

  57. V. Rotival, T. Duguet, Phys. Rev. C 79, 054308 (2009)

    ADS  Google Scholar 

  58. E. Chabanat et al., Nucl. Phys. A 635, 231 (1998)

    ADS  Google Scholar 

  59. V. Rotival, K. Bennaceur, T. Duguet, Phys. Rev. C 79, 054309 (2009)

    ADS  Google Scholar 

  60. T. Lesinski et al., Phys. Rev. C 74, 044315 (2006)

    ADS  Google Scholar 

  61. T. Lesinski et al., Phys. Rev. C 76, 014312 (2007)

    ADS  Google Scholar 

  62. M. Kortelainen et al., Phys. Rev. C 77, 064307 (2008)

    ADS  Google Scholar 

  63. M. Bender et al., Phys. Rev. C 80, 064302 (2009)

    ADS  Google Scholar 

  64. J. Margueron, H. Sagawa, K. Hagino, Phys. Rev. C 77, 054309 (2008)

    ADS  Google Scholar 

  65. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008)

    ADS  Google Scholar 

  66. B.G. Carlsson, J. Dobaczewski, M. Kortelainen, Phys. Rev. C 78, 044326 (2008)

    ADS  Google Scholar 

  67. S. Goriely et al., Phys. Rev. Lett. 102, 242501 (2009)

    ADS  Google Scholar 

  68. M. Kortelainen et al., Phys. Rev. C 82, 024313 (2010)

    ADS  Google Scholar 

  69. M. Kortelainen et al., Phys. Rev. C 85, 024304 (2012)

    ADS  Google Scholar 

  70. T. Duguet, J. Sadoudi, J. Phys. G, Nucl. Part. Phys. 37, 064009 (2010)

    ADS  Google Scholar 

  71. T. Duguet et al., Phys. Rev. C 65, 014310 (2002)

    ADS  Google Scholar 

  72. B. Bally et al., Int. J. Mod. Phys. E 21, 1250026 (2012)

    ADS  Google Scholar 

  73. R.R. Rodriguez-Guzman, K.W. Schmid, Eur. Phys. J. A 19, 45 (2004)

    ADS  Google Scholar 

  74. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Google Scholar 

  75. J. Sadoudi, Constraints on the nuclear energy density functional and new possible analytical forms (2011). Université Paris XI, France, http://tel.archives-ouvertes.fr/docs/00/04/49/86/PDF/tel-00001784.pdf

  76. L.M. Robledo, Phys. Rev. C 79, 021302 (2009)

    ADS  Google Scholar 

  77. L.M. Robledo, Phys. Rev. C 84, 014307 (2011)

    ADS  MathSciNet  Google Scholar 

  78. B. Avez, M. Bender, Phys. Rev. C 85, 034325 (2012)

    ADS  Google Scholar 

  79. M. Oi, M. Takahiro, Phys. Lett. B 707, 305 (2012)

    ADS  MathSciNet  Google Scholar 

  80. Z.-C. Gao, Q.-L. Hu, Y.S. Chen, arXiv:1306.3051 (2013)

  81. L.M. Robledo, J. Phys. G 37, 064020 (2010)

    ADS  Google Scholar 

  82. A. Kamlah, Z. Phys. 216, 52 (1968)

    ADS  Google Scholar 

  83. B. Jancovici, D.H. Schiff, Nucl. Phys. 58, 678 (1964)

    Google Scholar 

  84. D.M. Brink, A. Weiguny, Nucl. Phys. A 120, 59 (1968)

    ADS  Google Scholar 

  85. R. Balian, E. Brézin, Nuovo Cimento 64, 37 (1969)

    Google Scholar 

  86. E. Perlinska et al., Phys. Rev. C 69, 014316 (2004)

    ADS  Google Scholar 

  87. J. Dobaczewski, J. Dudek, Phys. Rev. C 52, 1827 (1995)

    ADS  Google Scholar 

  88. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  89. N. Chamel, Phys. Rev. C 82, 061307 (2010)

    ADS  Google Scholar 

  90. A. Ruzsinsky et al., J. Phys. Chem. 126, 104102 (2007)

    Google Scholar 

  91. T. Duguet, Phys. Rev. C 69, 054317 (2004)

    ADS  Google Scholar 

  92. M. Yamagami, Y.R. Shimizu, T. Nakatsukasa, Phys. Rev. C 80, 064301 (2009)

    ADS  Google Scholar 

  93. N. Chamel, Phys. Rev. C 82, 014313 (2010)

    ADS  Google Scholar 

  94. M. Yamagami et al., Phys. Rev. C 86, 034333 (2012)

    ADS  Google Scholar 

  95. J. Margueron, H. Sagawa, J. Phys. G 36, 125102 (2009)

    ADS  Google Scholar 

  96. B. Cochet et al., Nucl. Phys. A 731, 34 (2004)

    ADS  Google Scholar 

  97. B. Cochet et al., Int. J. Mod. Phys. E 13, 187 (2004)

    ADS  Google Scholar 

  98. T. Lesinski et al., Eur. Phys. J. A 40, 121 (2009)

    ADS  Google Scholar 

  99. T. Lesinski et al., J. Phys. G 39, 015108 (2012)

    ADS  Google Scholar 

  100. M. Zalewski, P. Olbratowski, W. Satula, Phys. Rev. C 81, 044314 (2010)

    ADS  Google Scholar 

  101. A.F. Fantina et al., J. Phys. G 38, 025101 (2011)

    ADS  Google Scholar 

  102. E. Moya de Guerra, O. Moreno, P. Sarriguren, J. Phys. Conf. Ser. 312, 092045 (2011)

    ADS  Google Scholar 

  103. D. Davesne, A. Pastore, J. Navarro, J. Phys. G 40, 095104 (2013)

    ADS  Google Scholar 

  104. J. Sadoudi et al., Phys. Scr. T 154, 014013 (2013)

    ADS  Google Scholar 

  105. J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

    Google Scholar 

  106. K. Bennaceur, J. Dobaczewski, F. Raimondi, arXiv:1305.7210 (2013)

  107. A. Staszczak et al., Eur. Phys. J. A 46, 85 (2010)

    ADS  Google Scholar 

  108. M. Bender, private communication (2013)

    Google Scholar 

  109. M. Baranger, Nucl. Phys. A 149, 225 (1970)

    ADS  Google Scholar 

  110. T. Duguet, G. Hagen, Phys. Rev. C 85, 034330 (2012)

    ADS  Google Scholar 

  111. J. Sadoudi, T. Duguet, unpublished (2013)

    Google Scholar 

  112. T. Duguet, unpublished (2013)

    Google Scholar 

  113. N. Chamel, S. Goriely, J.M. Pearson, Pairing: from atomic nuclei to neutron-star crusts, in Fifty Years of Nuclear BCS: Pairing in Finite Systems, ed. by R. Broglia, W. Zelevinsky (World Scientific, Singapore, 2013), p. 284

    Google Scholar 

  114. M. Bender, J. Dobaczewski, J. Engel, W. Nazarewicz, Phys. Rev. C 65, 054322 (2002)

    ADS  Google Scholar 

  115. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  MathSciNet  Google Scholar 

  116. H.A. Fertig, W. Kohn, Phys. Rev. A 62, 052511 (2000)

    ADS  Google Scholar 

  117. E.K.U. Gross, L.N. Oliveira, W. Kohn, Phys. Rev. A 37, 2809 (1988)

    ADS  MathSciNet  Google Scholar 

  118. A. Gorling, Phys. Rev. A 47, 2783 (1993)

    ADS  Google Scholar 

  119. J. Engel, Phys. Rev. C 75, 014306 (2007)

    ADS  MathSciNet  Google Scholar 

  120. J. Messud, M. Bender, E. Suraud, Phys. Rev. C 80, 054314 (2009)

    ADS  Google Scholar 

  121. T. Lesinski, arXiv:1301.0807 (2013)

  122. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1106 (1953)

    ADS  Google Scholar 

  123. J.-M. Yao et al., Phys. Rev. C 86, 014310 (2012)

    ADS  Google Scholar 

  124. J.-M. Yao, H. Mei, Z.P. Li, Phys. Lett. B 723, 459 (2013)

    ADS  Google Scholar 

  125. M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008)

    ADS  Google Scholar 

  126. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006)

    ADS  Google Scholar 

  127. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 78, 054312 (2008)

    ADS  Google Scholar 

  128. L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 054302 (2011)

    ADS  Google Scholar 

  129. T.R. Rodriguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010)

    ADS  Google Scholar 

  130. J.-M. Yao et al., Phys. Rev. C 81, 044311 (2010)

    ADS  Google Scholar 

  131. W. Satula et al., Phys. Rev. C 81, 054310 (2010)

    ADS  Google Scholar 

  132. W. Satula et al., Phys. Rev. C 86, 054316 (2012)

    ADS  Google Scholar 

  133. T.R. Rodriguez, G. Martinez-Pinedo, Phys. Rev. C 85, 044310 (2012)

    ADS  Google Scholar 

  134. T. Duguet, Problème à N corps nucléaire et force effective dans les méthodes de champ moyen auto-cohérent (2002). http://tel.archives-ouvertes.fr/docs/00/04/49/86/PDF/tel-00001784.pdf

  135. D. Baye, P.-H. Heenen, Phys. Rev. C 29, 1056 (1984)

    ADS  Google Scholar 

  136. H. Zdunczuk, J. Dobaczewski, W. Satula, Int. J. Mod. Phys. E 16, 377 (2007)

    ADS  Google Scholar 

  137. B. Avez et al., unpublished (2013)

    Google Scholar 

  138. J. Meyer et al., Nucl. Phys. A 588, 597 (1995)

    ADS  Google Scholar 

  139. M. Bender, T. Duguet, Int. J. Mod. Phys. E 16, 222 (2007)

    ADS  Google Scholar 

  140. N.L. Vaquero, T.R. Rodriguez, J.L. Egido, Phys. Lett. B 704, 520 (2011)

    ADS  Google Scholar 

  141. S. Peru, H. Goutte, Phys. Rev. C 77, 044313 (2008)

    ADS  Google Scholar 

  142. K. Yoshida, Eur. Phys. J. A 42, 583 (2009)

    ADS  Google Scholar 

  143. D. Pena Arteaga, P. Ring, arXiv:0912.0908 (2009)

  144. C. Losa et al., Phys. Rev. C 81, 064307 (2010)

    ADS  Google Scholar 

  145. J. Terasaki, J. Engel, Phys. Rev. C 82, 034326 (2010)

    ADS  Google Scholar 

  146. T. Nakatsukasa, T. Inakura, K. Yabana, Phys. Rev. C 76, 024318 (2007)

    ADS  Google Scholar 

  147. J. Toivanen et al., Phys. Rev. C 81, 034312 (2010)

    ADS  Google Scholar 

  148. P. Avogadro, T. Nakatsukasa, Phys. Rev. C 84, 014314 (2011)

    ADS  Google Scholar 

  149. N. Paar, J. Phys. G 37, 064014 (2010)

    ADS  Google Scholar 

  150. P.-G. Reinhard, K. Goeke, Rep. Prog. Phys. 50, 1 (1987)

    ADS  Google Scholar 

  151. K. Hagino, P.-G. Reinhard, G.F. Bertsch, Phys. Rev. C 65, 064320 (2002)

    ADS  Google Scholar 

  152. S.G. Rohozinski, J. Phys. G 39, 095104 (2012)

    ADS  Google Scholar 

  153. L. Prochniak et al., Nucl. Phys. A 730, 59 (2004)

    ADS  Google Scholar 

  154. L. Prochniak, S.G. Rohozinski, J. Phys. G 36, 123101 (2009)

    ADS  Google Scholar 

  155. J. Libert, M. Girod, J.-P. Delaroche, Phys. Rev. C 60, 054301 (1999)

    ADS  Google Scholar 

  156. J.-P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)

    ADS  Google Scholar 

  157. T. Niksic et al., Phys. Rev. C 79, 034303 (2009)

    ADS  Google Scholar 

  158. Z.P. Li et al., Phys. Rev. C 86, 034334 (2012)

    ADS  Google Scholar 

  159. N. Hinohara et al., Phys. Rev. C 85, 024323 (2012)

    ADS  Google Scholar 

  160. K. Nomura et al., Phys. Rev. C 83, 014309 (2011)

    ADS  Google Scholar 

  161. K. Nomura et al., Phys. Rev. C 84, 014302 (2011)

    ADS  Google Scholar 

  162. D. Almehed, S. Frauendorf, F. Dönau, Phys. Rev. C 63, 044311 (2001)

    ADS  Google Scholar 

  163. M. Anguiano, J.L. Egido, L.M. Robledo, Nucl. Phys. A 683, 227 (2001)

    ADS  MATH  Google Scholar 

  164. M. Bender et al., unpublished (2013)

    Google Scholar 

  165. B. Gebremariam, T. Duguet, S.K. Bogner, Phys. Rev. C 82, 014305 (2010)

    ADS  Google Scholar 

  166. B. Gebremariam, S.K. Bogner, T. Duguet, Nucl. Phys. A 851, 17 (2011)

    ADS  Google Scholar 

  167. N. Kaiser, Eur. Phys. J. A 45, 61 (2010)

    ADS  Google Scholar 

  168. J.W. Holt, N. Kaiser, W. Weise, Eur. Phys. J. A 47, 128 (2011)

    ADS  Google Scholar 

  169. J.W. Holt, N. Kaiser, W. Weise, Prog. Part. Nucl. Phys. 67, 353 (2012)

    ADS  Google Scholar 

  170. N. Kaiser, Eur. Phys. J. A 48, 36 (2012)

    ADS  Google Scholar 

  171. M. Stoitsov et al., Phys. Rev. C 82, 054307 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to thank deeply all those I have had the chance to collaborate with on topics related to the matter of the present lecture notes, i.e. B. Avez, M. Bender, K. Bennaceur, P. Bonche, B. A. Brown, P.-H. Heenen, D. Lacroix, T. Lesinski, J. Meyer, V. Rotival, J. Sadoudi, N. Schunck and C. Simenel. I also wish to thank M. Bender for providing me with several of the figures that are used in the present lecture notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Duguet .

Editor information

Editors and Affiliations

Appendix: F-Functions

Appendix: F-Functions

Kinetic densities are expressed in INM in terms of functions \(F^{(0)}_{m}(I_{\tau},I_{\sigma},I_{\sigma\tau})\), \(F^{(\tau)}_{m}(I_{\tau},I_{\sigma},I_{\sigma\tau})\), \(F^{(\sigma)}_{m}(I_{\tau},I_{\sigma},I_{\sigma\tau}) \) and \(F^{(\sigma\tau)}_{m}(I_{\tau},I_{\sigma},I_{\sigma\tau}) \) defined through [114]

$$\begin{aligned} F^{(0)}_{m} &\equiv\frac{1}{4} \bigl[ (1+I_\tau+I_\sigma+I_{\sigma\tau})^m + (1+I_\tau-I_\sigma-I_{\sigma\tau})^m \\ &\quad +(1-I_\tau+I_\sigma-I_{\sigma\tau})^m +(1-I_\tau-I_\sigma+I_{\sigma\tau})^m \bigr] , \end{aligned}$$
(7.90a)
$$\begin{aligned} F^{(\tau)}_{m}&\equiv \frac{1}{4} \bigl[ (1+I_\tau+I_\sigma+I_{\sigma\tau})^m + (1+I_\tau-I_\sigma-I_{\sigma\tau})^m \\ &\quad -(1-I_\tau+I_\sigma-I_{\sigma\tau})^m -(1-I_\tau-I_\sigma+I_{\sigma\tau})^m \bigr] , \end{aligned}$$
(7.90b)
$$\begin{aligned} F^{(\sigma)}_{m} &\equiv \frac{1}{4} \bigl[ (1+I_\tau+I_\sigma+I_{\sigma\tau})^m - (1+I_\tau-I_\sigma-I_{\sigma\tau})^m \\ &\quad +(1-I_\tau+I_\sigma-I_{\sigma\tau})^m -(1-I_\tau-I_\sigma+I_{\sigma\tau})^m \bigr] , \end{aligned}$$
(7.90c)
$$\begin{aligned} F^{(\sigma\tau)}_{m} &\equiv \frac{1}{4} \bigl[ (1+I_\tau+I_\sigma+I_{\sigma\tau})^m - (1+I_\tau-I_\sigma-I_{\sigma\tau})^m \\ &\quad -(1-I_\tau+I_\sigma-I_{\sigma\tau})^m +(1-I_\tau-I_\sigma+I_{\sigma\tau})^m \bigr] . \end{aligned}$$
(7.90d)

Their first derivatives with respect to spin, isospin and spin-isospin excesses are

$$\begin{aligned} \frac{\partial F^{(\tau)}_{m}}{\partial I_\tau} &= \frac{\partial F^{(\sigma)}_{m}}{\partial I_\sigma} = \frac{\partial F^{(\sigma \tau)}_{m}}{\partial I_{\sigma\tau}} = m F^{(0)}_{m-1} , \end{aligned}$$
(7.91a)
$$\begin{aligned} \frac{\partial F^{(0)}_{m}}{\partial I_\tau} &= \frac{\partial F^{(\sigma)}_{m}}{\partial I_{\sigma\tau}} = \frac{\partial F^{(\sigma\tau)}_{m}}{\partial I_\sigma} = m F^{(\tau)}_{m-1} , \end{aligned}$$
(7.91b)
$$\begin{aligned} \frac{\partial F^{(0)}_{m}}{\partial I_\sigma} &= \frac{\partial F^{(\tau)}_{m}}{\partial I_{\sigma\tau}} = \frac{\partial F^{(\sigma\tau)}_{m}}{\partial I_\tau} = m F^{(\sigma)}_{m-1} , \end{aligned}$$
(7.91c)
$$\begin{aligned} \frac{\partial F^{(0)}_{m}}{\partial I_{\sigma\tau}}& = \frac {\partial F^{(\tau)}_{m}}{\partial I_\sigma} = \frac{\partial F^{(\sigma)}_{m}}{\partial I_\tau} = m F^{(\sigma\tau)}_{m-1} , \end{aligned}$$
(7.91d)

while their second derivatives are

$$\begin{aligned} \frac{\partial^2 F^{(j)}_{m}}{\partial I_i^2} = m (m-1) F^{(j)}_{m-2} , \end{aligned}$$
(7.92)

for any i,j∈{0,τ,σ,στ}. Remarkable values are

$$\begin{aligned} F^{(0)}_{0}(I_\tau,I_\sigma,I_{\sigma\tau}) &=1 , \qquad F^{(i)}_{0}(I_\tau,I_\sigma,I_{\sigma\tau}) =0 , \end{aligned}$$
(7.93a)
$$\begin{aligned} F^{(0)}_{1}(I_\tau,I_\sigma,I_{\sigma\tau}) &=1 , \qquad F^{(i)}_{1}(I_\tau,I_\sigma,I_{\sigma\tau}) =I_i , \end{aligned}$$
(7.93b)

and

$$\begin{aligned} F^{(0)}_{m} (0,0,0) &= 1 , \end{aligned}$$
(7.94a)
$$\begin{aligned} F^{(i)}_{m} (0,0,0) &= 0 , \end{aligned}$$
(7.94b)
$$\begin{aligned} F^{(\tau)}_{m} (0,1,0) &= F^{(\tau)}_{m} (0,0,1) = 0 , \end{aligned}$$
(7.94c)
$$\begin{aligned} F^{(\sigma)}_{m} (1,0,0)& = F^{(\sigma)}_{m} (0,0,1) = 0 , \end{aligned}$$
(7.94d)
$$\begin{aligned} F^{(\sigma\tau)}_{m} (1,0,0) &= F^{(\sigma\tau)}_{m} (0,1,0) = 0 , \end{aligned}$$
(7.94e)
$$\begin{aligned} F^{(0)}_{m} (1,0,0) &= F^{(0)}_{m} (0,1,0) = F^{(0)}_{m} (0,0,1) = 2^{m-1} , \end{aligned}$$
(7.94f)
$$\begin{aligned} F^{(\tau)}_{m} (1,0,0) &= F^{(\sigma)}_{m} (0,1,0) = F^{(\sigma\tau )}_{m} (0,0,1) = 2^{m-1} , \end{aligned}$$
(7.94g)
$$\begin{aligned} F^{(0)}_{m} (1,1,1) &= F^{(i)}_{m} (1,1,1) = 4^{m-1} , \end{aligned}$$
(7.94h)

where i∈{τ,σ,στ}.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duguet, T. (2014). The Nuclear Energy Density Functional Formalism. In: Scheidenberger, C., Pfützner, M. (eds) The Euroschool on Exotic Beams, Vol. IV. Lecture Notes in Physics, vol 879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45141-6_7

Download citation

Publish with us

Policies and ethics