Skip to main content

Effective Field Theories of Loosely Bound Nuclei

  • Chapter
The Euroschool on Exotic Beams, Vol. IV

Part of the book series: Lecture Notes in Physics ((LNP,volume 879))

Abstract

Physics can be organized as a sequence of effective field theories (EFTs) according to a distance or inverse-momentum scale. I discuss in these lectures the EFTs that allow us to describe nuclei in the context of the underlying theory of strong interactions, QCD. After an introduction to the general EFT ideas, QED in the non-relativistic regime is used to illustrate the emergence of structure from the breakdown of perturbation theory. EFTs of QCD are then developed for the scales appropriate for typical nuclei (Chiral EFT), light nuclei (Pionless EFT), and nuclei near the driplines (Halo/Cluster EFT). Emphasis is on the conceptual framework, including the power counting and renormalization that underline the connection between QCD and loosely bound nuclei, rather than on the broad phenomenological successes of the various EFTs. The surprising non-perturbative renormalization of pion exchange and shorter-range interactions is highlighted, together with the role of fine-tuning in loosely bound systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    ADS  MathSciNet  Google Scholar 

  2. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    ADS  Google Scholar 

  3. C. Ordóñez, U. van Kolck, Phys. Lett. B 291, 459 (1992)

    ADS  Google Scholar 

  4. S. Weinberg, Phys. Lett. B 295, 114 (1992)

    ADS  Google Scholar 

  5. T.-S. Park, D.-P. Min, M. Rho, Phys. Rep. 233, 341 (1993)

    ADS  Google Scholar 

  6. U. van Kolck, Soft physics: applications of effective chiral Lagrangians to nuclear physics and quark models. Ph.D dissertation, University of Texas, 1993, UMI-94-01021

    Google Scholar 

  7. C. Ordóñez, L. Ray, U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994)

    ADS  Google Scholar 

  8. U. van Kolck, Phys. Rev. C 49, 2932 (1994)

    ADS  Google Scholar 

  9. U. van Kolck, Few-Body Syst., Suppl. 9, 444 (1995)

    Google Scholar 

  10. C. Ordóñez, L. Ray, U. van Kolck, Phys. Rev. C 53, 2086 (1996)

    ADS  Google Scholar 

  11. U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999)

    ADS  Google Scholar 

  12. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, nucl-th/0008064

  13. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002)

    ADS  Google Scholar 

  14. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    ADS  Google Scholar 

  15. H.-W. Hammer, L. Platter, Annu. Rev. Nucl. Part. Sci. 60, 207 (2010)

    ADS  Google Scholar 

  16. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)

    ADS  Google Scholar 

  17. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    ADS  Google Scholar 

  18. S. Weinberg, Phys. A 96, 327 (1979)

    Google Scholar 

  19. G.P. Lepage, hep-ph/0506330

  20. J. Polchinski, hep-th/9210046

  21. D.B. Kaplan, nucl-th/9506035

  22. U. van Kolck, L.J. Abu-Raddad, D.M. Cardamone, nucl-th/0205058

  23. G. ’t Hooft, NATO Adv. Stud. Inst. Ser. B Phys. 59, 135 (1980)

    Google Scholar 

  24. S. Weinberg, The Quantum Theory of Fields, Vol. 1: Foundations (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  25. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    ADS  Google Scholar 

  26. H. Georgi, L. Randall, Nucl. Phys. B 276, 241 (1986)

    ADS  Google Scholar 

  27. T.Y. Cao, in Renormalization. From Lorentz to Landau (and beyond), ed. by L.M. Brown (Springer, Berlin, 1993), pp. 87–133

    Google Scholar 

  28. S. Hartmann, Stud. Hist. Philos. Mod. Phys. 32, 267 (2001)

    MATH  Google Scholar 

  29. W.E. Caswell, G.P. Lepage, Phys. Lett. B 167, 437 (1986)

    ADS  Google Scholar 

  30. H. Georgi, Phys. Lett. B 240, 447 (1990)

    ADS  Google Scholar 

  31. T. Mannel, W. Roberts, Z. Ryzak, Nucl. Phys. B 368, 204 (1992)

    ADS  Google Scholar 

  32. D.A. Dicus, C. Kao, W.W. Repko, Phys. Rev. D 57, 2443 (1998)

    ADS  Google Scholar 

  33. M.E. Luke, A.V. Manohar, Phys. Lett. B 286, 348 (1992)

    ADS  Google Scholar 

  34. R.J. Hill, G. Lee, G. Paz, M.P. Solon, Phys. Rev. D 87, 053017 (2013)

    ADS  Google Scholar 

  35. B.R. Holstein, Am. J. Phys. 72, 333 (2004)

    ADS  Google Scholar 

  36. P. Labelle, S.M. Zebarjad, C.P. Burgess, Phys. Rev. D 56, 8053 (1997)

    ADS  Google Scholar 

  37. U.D. Jentschura, A. Czarnecki, K. Pachucki, Phys. Rev. A 72, 062102 (2005)

    ADS  Google Scholar 

  38. E. Mereghetti, W.H. Hockings, U. van Kolck, Ann. Phys. 325, 2363 (2010)

    ADS  MATH  Google Scholar 

  39. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  40. S. Weinberg, Trans. N. Y. Acad. Sci. 38, 185 (1977)

    Google Scholar 

  41. V. Baluni, Phys. Rev. D 19, 2227 (1979)

    ADS  Google Scholar 

  42. C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006)

    ADS  Google Scholar 

  43. D.B. Kaplan, M.J. Savage, Nucl. Phys. A 556, 653 (1993). [Erratum-ibid. A 570, 833 (1994)] [Erratum-ibid. A 580, 679 (1994)]

    ADS  Google Scholar 

  44. S.-L. Zhu, C.M. Maekawa, B.R. Holstein, M.J. Ramsey-Musolf, U. van Kolck, Nucl. Phys. A 748, 435 (2005)

    ADS  Google Scholar 

  45. J. de Vries, E. Mereghetti, R.G.E. Timmermans, U. van Kolck, Ann. Phys. 338, 50 (2013)

    ADS  Google Scholar 

  46. S. Scherer, M.R. Schindler, hep-ph/0505265

  47. B. Long, U. van Kolck, Nucl. Phys. A 840, 39 (2010)

    ADS  Google Scholar 

  48. B. Long, U. van Kolck, Nucl. Phys. A 870–871, 72 (2011)

    Google Scholar 

  49. V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995)

    ADS  Google Scholar 

  50. V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003)

    ADS  Google Scholar 

  51. V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008)

    ADS  Google Scholar 

  52. J.L. Friar, Phys. Rev. C 60, 034002 (1999)

    ADS  Google Scholar 

  53. N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1997)

    ADS  Google Scholar 

  54. N. Kaiser, S. Gerstendorfer, W. Weise, Nucl. Phys. A 637, 395 (1998)

    ADS  Google Scholar 

  55. M.C.M. Rentmeester, R.G.E. Timmermans, J.L. Friar, J.J. de Swart, Phys. Rev. Lett. 82, 4992 (1999)

    ADS  Google Scholar 

  56. M.C.M. Rentmeester, R.G.E. Timmermans, J.J. de Swart, Phys. Rev. C 67, 044001 (2003)

    ADS  Google Scholar 

  57. N. Kaiser, Phys. Rev. C 65, 017001 (2002)

    ADS  Google Scholar 

  58. J.L. Friar, D. Hüber, U. van Kolck, Phys. Rev. C 59, 53 (1999)

    ADS  Google Scholar 

  59. D. Hüber, J.L. Friar, A. Nogga, H. Witała, U. van Kolck, Few-Body Syst. 30, 95 (2001)

    ADS  Google Scholar 

  60. E. Epelbaum, Phys. Lett. B 639, 456 (2006)

    ADS  Google Scholar 

  61. E. Epelbaum, Eur. Phys. J. A 34, 197 (2007)

    ADS  Google Scholar 

  62. J.L. Friar, G.L. Payne, U. van Kolck, Phys. Rev. C 71, 024003 (2005)

    ADS  Google Scholar 

  63. E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, H. Witała, Phys. Rev. C 66, 064001 (2002)

    ADS  Google Scholar 

  64. H.-W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013)

    ADS  Google Scholar 

  65. S.R. Beane, V. Bernard, T.S.H. Lee, U.-G. Meißner, U. van Kolck, Nucl. Phys. A 618, 381 (1997)

    ADS  Google Scholar 

  66. U. van Kolck, J.A. Niskanen, G.A. Miller, Phys. Lett. B 493, 65 (2000)

    ADS  Google Scholar 

  67. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002)

    ADS  MATH  Google Scholar 

  68. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 478, 629 (1996)

    ADS  Google Scholar 

  69. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    ADS  Google Scholar 

  70. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000)

    ADS  Google Scholar 

  71. S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, U. van Kolck, Phys. Rev. A 64, 042103 (2001)

    ADS  Google Scholar 

  72. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005)

    ADS  Google Scholar 

  73. M.C. Birse, Phys. Rev. C 74, 014003 (2006)

    ADS  Google Scholar 

  74. B. Long, U. van Kolck, Ann. Phys. 323, 1304 (2008)

    ADS  MATH  Google Scholar 

  75. M.C. Birse, Philos. Trans. R. Soc. Lond. A 369, 2662 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  76. C.-J. Yang, C. Elster, D.R. Phillips, Phys. Rev. C 80, 034002 (2009)

    ADS  Google Scholar 

  77. Ch. Zeoli, R. Machleidt, D.R. Entem, arXiv:1208.2657 [nucl-th]

  78. E. Epelbaum, U.-G. Meißner, nucl-th/0609037

  79. M. Pavón Valderrama, Phys. Rev. C 83, 024003 (2011)

    ADS  Google Scholar 

  80. B. Long, C.-J. Yang, Phys. Rev. C 84, 057001 (2011)

    ADS  Google Scholar 

  81. M. Pavón Valderrama, Phys. Rev. C 84, 064002 (2011)

    ADS  Google Scholar 

  82. B. Long, C.-J. Yang, Phys. Rev. C 85, 034002 (2012)

    ADS  Google Scholar 

  83. B. Long, C.-J. Yang, Phys. Rev. C 86, 024001 (2012)

    ADS  Google Scholar 

  84. S.R. Beane, P.F. Bedaque, K. Orginos, M.J. Savage, Phys. Rev. Lett. 97, 012001 (2006)

    ADS  Google Scholar 

  85. S.R. Beane, E. Chang et al., Phys. Rev. C 88, 024003 (2013)

    ADS  Google Scholar 

  86. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997)

    ADS  Google Scholar 

  87. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 676, 357 (2000)

    ADS  Google Scholar 

  88. P.F. Bedaque, U. van Kolck, Phys. Lett. B 428, 221 (1998)

    ADS  Google Scholar 

  89. U. van Kolck, Nucl. Phys. A 645, 273 (1999)

    ADS  Google Scholar 

  90. S.R. Beane, T.D. Cohen, D.R. Phillips, Nucl. Phys. A 632, 445 (1998)

    ADS  Google Scholar 

  91. X. Kong, F. Ravndal, Nucl. Phys. A 665, 137 (2000)

    ADS  Google Scholar 

  92. J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999)

    ADS  Google Scholar 

  93. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006)

    ADS  MathSciNet  Google Scholar 

  94. V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, J.J. de Swart, Phys. Rev. C 48, 792 (1993)

    ADS  Google Scholar 

  95. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. C 58, 641 (1998)

    ADS  Google Scholar 

  96. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999)

    ADS  Google Scholar 

  97. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999)

    ADS  Google Scholar 

  98. P.F. Bedaque, G. Rupak, H.W. Grießhammer, H.-W. Hammer, Nucl. Phys. A 714, 589 (2003)

    ADS  MATH  Google Scholar 

  99. W. Dilg, L. Koester, W. Nistler, Phys. Lett. B 36, 208 (1971)

    ADS  Google Scholar 

  100. W.T.H. van Oers, J.D. Seagrave, Phys. Lett. B 24, 562 (1967)

    ADS  Google Scholar 

  101. A.C. Phillips, G. Barton, Phys. Lett. B 28, 378 (1969)

    ADS  Google Scholar 

  102. A. Kievsky, S. Rosati, W. Tornow, M. Viviani, Nucl. Phys. A 607, 402 (1996)

    ADS  Google Scholar 

  103. L. Platter, Phys. Rev. C 74, 037001 (2006)

    ADS  Google Scholar 

  104. S. Koenig, H.-W. Hammer, Phys. Rev. C 83, 064001 (2011)

    ADS  Google Scholar 

  105. L. Platter, H.-W. Hammer, Nucl. Phys. A 766, 132 (2006)

    ADS  Google Scholar 

  106. C. Ji, D.R. Phillips, L. Platter, Ann. Phys. 327, 1803 (2012)

    ADS  MATH  Google Scholar 

  107. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004)

    ADS  Google Scholar 

  108. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Lett. B 607, 254 (2005)

    ADS  Google Scholar 

  109. J. Kirscher, H.W. Grießhammer, D. Shukla, H.M. Hofmann, Eur. Phys. J. A 44, 239 (2010)

    ADS  Google Scholar 

  110. T. Mehen, I.W. Stewart, M.B. Wise, Phys. Rev. Lett. 83, 931 (1999)

    ADS  Google Scholar 

  111. H.M. Müller, S.E. Koonin, R. Seki, U. van Kolck, Phys. Rev. C 61, 044320 (2000)

    ADS  Google Scholar 

  112. I. Stetcu, B.R. Barrett, U. van Kolck, Phys. Lett. B 653, 358 (2007)

    ADS  Google Scholar 

  113. S.R. Beane, P.F. Bedaque, A. Parreño, M.J. Savage, Phys. Lett. B 585, 106 (2004)

    ADS  Google Scholar 

  114. I. Stetcu, J. Rotureau, B.R. Barrett, U. van Kolck, Ann. Phys. 325, 1644 (2010)

    ADS  MATH  Google Scholar 

  115. J. Rotureau, I. Stetcu, B.R. Barrett, M.C. Birse, U. van Kolck, Phys. Rev. A 82, 032711 (2010)

    ADS  Google Scholar 

  116. D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009)

    ADS  Google Scholar 

  117. I. Stetcu, J. Rotureau, Prog. Part. Nucl. Phys. 69, 182 (2013)

    ADS  Google Scholar 

  118. S.A. Coon, M.I. Avetian, M.K.G. Kruse, U. van Kolck, P. Maris, J.P. Vary, Phys. Rev. C 86, 054002 (2012)

    ADS  Google Scholar 

  119. S.N. More, A. Ekstrom, R.J. Furnstahl, G. Hagen, T. Papenbrock, Phys. Rev. C 87, 044326 (2013)

    ADS  Google Scholar 

  120. C.A. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002)

    ADS  Google Scholar 

  121. TUNL Nuclear Data Evaluation Project, http://www.tunl.duke.edu/nucldata/

  122. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003)

    ADS  MATH  Google Scholar 

  123. National Nuclear Data Center Evaluated Nuclear Data Files, Brookhaven National Laboratory, http://www.nndc.bnl.gov/

  124. B. Haesner et al., Phys. Rev. C 28, 995 (1983)

    ADS  Google Scholar 

  125. M.E. Battat et al., Nucl. Phys. 12, 291 (1959)

    Google Scholar 

  126. R. Higa, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171 (2008)

    ADS  Google Scholar 

  127. S.A. Afzal, A.A.Z. Ahmad, S. Ali, Rev. Mod. Phys. 41, 247 (1969)

    ADS  Google Scholar 

  128. G. Rupak, Nucl. Phys. A 678, 405 (2000)

    ADS  Google Scholar 

  129. G. Rupak, R. Higa, Phys. Rev. Lett. 106, 222501 (2011)

    ADS  Google Scholar 

  130. J. Rotureau, U. van Kolck, Few-Body Syst. 54, 725 (2013)

    ADS  Google Scholar 

  131. S. Ando et al., in progress

    Google Scholar 

  132. B. Acharya, C. Ji, D.R. Phillips, Phys. Lett. B 723, 196 (2013)

    ADS  Google Scholar 

  133. P. Hagen, H.-W. Hammer, L. Platter, Eur. Phys. J. A 49, 118 (2013)

    Google Scholar 

  134. T. Papenbrock, Nucl. Phys. A 852, 36 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

I thank my many collaborators over the years for their help in shaping my views of EFTs, especially in the challenging nuclear context. This work was supported in part by the Université Paris Sud under the program “Attractivité 2013”, and by the US DOE under grant DE-FG02-04ER41338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. van Kolck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Kolck, U. (2014). Effective Field Theories of Loosely Bound Nuclei. In: Scheidenberger, C., Pfützner, M. (eds) The Euroschool on Exotic Beams, Vol. IV. Lecture Notes in Physics, vol 879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45141-6_4

Download citation

Publish with us

Policies and ethics