Skip to main content

Detecting and Tracking Unknown Number of Objects with Dirichlet Process Mixture Models and Markov Random Fields

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

Abstract

We present an object tracking framework that employs Dirichlet Process Mixture Models (DPMMs) in a multiple hypothesis tracker. DPMMs enable joint detection and tracking of an unknown and variable number of objects in a fully automatic fashion without any initial labeling. At each frame, we extract foreground superpixels and cluster them into objects by propagating clusters across consecutive frames. Since no constraint on the number of clusters is required, we can track multiple cluster hypotheses at the same time. By incorporating superpixels and an efficient pruning scheme, we keep the total number of hypotheses low and tractable. We refine object boundaries with Markov random fields and connectivity analysis of the tracked clusters. Finally, we group tracked hypotheses to combine possible parts of an object as one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reid, D.B.: An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control 24, 843–854 (1979)

    Article  Google Scholar 

  2. Fortmann, T., Bar-Shalom, Y., Scheffe, M.: Multi-target tracking using joint probabilistic data association, pp. 807–812 (1980)

    Google Scholar 

  3. Arulampalam, M.S., Maskell, S., Gordon, N.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50, 174–188 (2002)

    Article  Google Scholar 

  4. Özkan, E., Özbek, I.Y., Demirekler, M.: Dynamic speech spectrum representation and tracking variable number of vocal tract resonance frequencies with time-varying dirichlet process mixture models. IEEE Transactions on Audio, Speech & Language Processing 17, 1518–1532 (2009)

    Article  Google Scholar 

  5. Neiswanger, W., Wood, F.: Unsupervised Detection and Tracking of Arbitrary Objects with Dependent Dirichlet Process Mixtures. ArXiv e-prints (2012)

    Google Scholar 

  6. Antoniak, C.E.: Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems. The Annals of Statistics 2, 1152–1174 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models. Journal of Computational And Graphical Statistics 9, 249–265 (2000)

    MathSciNet  Google Scholar 

  8. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 (2012)

    Google Scholar 

  9. Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999 (2002)

    Google Scholar 

  10. Sudderth, E.: Graphical Models for Visual Object Recognition and Tracking. PhD thesis, Massachusetts Institute of Technology (2006)

    Google Scholar 

  11. Casella, G., Robert, C.P.: Rao-blackwellisation of sampling schemes. Biometrika 83, 81–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 2001 (2001)

    Article  Google Scholar 

  13. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org/

  14. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1436–1453 (2007)

    Article  Google Scholar 

  15. Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies. Comput. Vis. Image Underst. 112, 14–29 (2008)

    Article  Google Scholar 

  16. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  17. Bernardini, F., Bajaj, C.L.: Sampling and reconstructing manifolds using alpha-shapes. In: Proc. 9th Canad. Conf. Comput. Geom. (1997)

    Google Scholar 

  18. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org

  19. PETS 2001: Second IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2001), ftp://ftp.pets.rdg.ac.uk/pub/PETS2001/

  20. PETS 2009: Eleventh IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2009), ftp://ftp.pets.rdg.ac.uk/pub/PETS2009/

  21. Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol. IEEE Trans. Pattern Anal. Mach. Intell. 31, 319–336 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Topkaya, I.S., Erdogan, H., Porikli, F. (2013). Detecting and Tracking Unknown Number of Objects with Dirichlet Process Mixture Models and Markov Random Fields. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics