Skip to main content

Secondary Metabolites of Traditional Medical Plants: A Case Study of Ashwagandha (Withania somnifera)

  • Chapter
  • First Online:
Applied Plant Cell Biology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 22))

Abstract

Ashwagandha is an important traditional medical plant and has been used for more than 3,000 years in Ayurveda and traditional medicine. Ashwagandha is used extensively for pharmacological and medical purposes. Therefore, the plant has attracted scientific attention worldwide. The medicinal properties of Ashwagandha are attributed to specific secondary metabolites such as alkaloids and withsteroids–withanolides. Withanolides are C28 steroidal structures built on an ergostane framework with oxidation at C22 and C26 to form a lactone ring. Withanolides are biosynthesised through the triterpenoid source pathway, and during recent years, tremendous progress in understanding withanolide biosynthesis and genomics has been achieved. This chapter provides a glimpse on major secondary metabolites from Ashwagandha, their distribution, occurrence, biosynthesis, genomics, and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam KP, Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry 48:953–959

    CAS  Google Scholar 

  • Ahmad M, Douh A (2002) New withanolides and other constituents from the fruits of Withania somnifera. Pharm Med Chem 6:267

    Google Scholar 

  • Ahuja A, Kaur D, Sharada M, Kumar A, Suri A, Dutt P (2009) Glycowithanolides accumulation in in vitro shoot cultures of Indian ginseng (Withania somnifera Dunal). Nat Prod Commun 4:479–482

    CAS  PubMed  Google Scholar 

  • Akhtar N, Gupta P, Sangwan NS, Sangwan RS, Trivedi PK (2013) Cloning and functional characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Withania somnifera: an important medicinal plant. Protoplasma. doi:10.1007/s00709-012-0450-2

    Google Scholar 

  • Anjaneyulu ASR, Rao DS, Lequesne PW (1997) Withanolides, biologically active natural steroidal lactones: a review. Stud Nat Prod Chem 20:135–261

    Google Scholar 

  • Asano N, Nash RJ, Molyneux RJ, Fleet GW (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetr 11:1645–1680

    CAS  Google Scholar 

  • Baldi A, Singh D, Dixit VK (2008) Dual elicitation for improved production of withaferin A by cell suspension cultures of Withania somnifera. Appl Biochem Biotechnol 151:556–564

    CAS  PubMed  Google Scholar 

  • Bandopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Google Scholar 

  • Bargagna MP, Ravindranath PP, Mohan R (2006) Small molecule anti-angiogenic probes of the ubiquitin proteasome pathway: potential applications to choroidal neovascularization. Invest Ophthalmol Vis Sci 47:4138–4145

    Google Scholar 

  • Bhat WW, Lattoo SK, Razdan S, Dhar N, Rana S, Dhar RS, Khan S, Vishwakarma RA (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499:25–36

    CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Bhattacharya D, Sairam K, Ghosal S (2002) Effect of Withania somnifera glycowithanolides on a rat model of tardive dyskinesia. Phytomedicine 9:167–170

    CAS  PubMed  Google Scholar 

  • Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429

    CAS  PubMed  Google Scholar 

  • Brock A, Herzfeld T, Paschke T, Koch M, Draeger B (2006) Brassicaceae contain nortropane alkaloids. Phytochemistry 67:2050–2057

    CAS  PubMed  Google Scholar 

  • Budhiraja RD, Krishan P, Sudhir S (2000) Biological activity of withanolides. J Sci Ind Res 59:33–54

    Google Scholar 

  • Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 46:521–547

    CAS  Google Scholar 

  • Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP, Roy R, Khetrapal CL, Tuli R (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 71:1085–1094

    CAS  PubMed  Google Scholar 

  • Chaturvedi P, Mishra M, Akhtar N, Gupta P, Mishra P, Tuli R (2012) Sterol glycosyltransferases–identification of members of gene family and their role in stress in Withania somnifera. Mol Biol Rep 39:9755–9764

    CAS  PubMed  Google Scholar 

  • Chaurasiya ND (2007) Studies on withanolides metabolism in ashwagandha (Withania somnifera). Ph.D. thesis, Kurukshetra University, Haryana

    Google Scholar 

  • Chaurasiya ND, Gupta VK, Sangwan RS (2007) Leaf ontogenic phase related dynamics of withaferin A and withanone biogenesis in Ashwagandha (Withania somnifera) – an important medicinal herb. J Plant Biol 50:508–513

    Google Scholar 

  • Chaurasiya ND, Uniyal GC, Lal P, Misra L, Sangwan NS, Tuli R, Sangwan RS (2008) Analysis of withanolides in root and leaf of Withania somnifera by HPLC with photo diode array and evaporative light scattering detection. Phytochem Anal 19:148–154

    PubMed  Google Scholar 

  • Chaurasiya ND, Sangwan RS, Misra LN, Tuli R, Sangwan NS (2009) Metabolic clustering of a core collection of Indian ginseng (Withania somnifera) through DNA, isoenzymes, polypeptide and withanolide profile diversity. Fitoterapia 80:496–505

    CAS  PubMed  Google Scholar 

  • Chaurasiya ND, Sangwan NS, Sabir F, Misra LN, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep. doi:10.1007/s00299-012-1302-4

    PubMed  Google Scholar 

  • Ciddi V (2006) Withaferin A from cell cultures of Withania somnifera. Indian J Pharm Sci 68:490–492

    CAS  Google Scholar 

  • Cordell GA, Mary LQB, Farnsworth NR (2001) The potential of alkaloids in drug discovery. Phytother Res 15:183–205

    CAS  PubMed  Google Scholar 

  • Cordoba E, Salmi M, LeĂłn P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2933–2943

    CAS  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    PubMed  Google Scholar 

  • Davis L, Kuttan G (2002) Effect of Withania somnifera on CTL activity. J Exp Clin Cancer Res 21:115–118

    CAS  PubMed  Google Scholar 

  • Deb DB (1980) Enumeration. Synonymy and distribution of the Solanaceae in India. J Econ Tax Bot 1:33–54

    Google Scholar 

  • De-Eknamkul W, Potduang B (2003) Biosynthesis of beta-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398

    CAS  PubMed  Google Scholar 

  • DeLuca V, St Pierre B (2000) The developmental and cell biology of alkaloid biosynthesis. Trend Plant Sci 5:168–173

    CAS  Google Scholar 

  • Dewir YH, Chakrabarty D, Lee SH, Hahn EJ, Paek KY (2010) Indirect regeneration of Withania somnifera and comparative analysis of withanolides in in vitro and greenhouse grown plants. Biol Plant 54:357–360

    Google Scholar 

  • Dhar RS, Verma V, Suri KA, Sangwan RS, Satti NK, Kumar A, Tuli R, Qazi GN (2006) Phytochemical and genetic analysis in selected chemotypes of Withania somnifera. Phytochemistry 67:2269–2276

    CAS  PubMed  Google Scholar 

  • Dhuley JN (2001) Nootropic like effect of ashwagandha (Withania somnifera L) in mice. Phytother Res 15:524–528

    CAS  PubMed  Google Scholar 

  • Drager B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21:211–223

    PubMed  Google Scholar 

  • Drager B, Funck C, Hohler A, Mrachatz G, Nahrstedt A (1994) Calystegines as a new group of tropane alkaloids in Solanaceae. Plant Cell Tissue Organ Cult 38:235–240

    Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    CAS  PubMed  Google Scholar 

  • Falsey RR, Marron MT, Gunaherath GM, Shirahatti N, Mahadevan D et al (2006) Actin microfilament aggregation induced by withaferin A is mediated by annexin II. Nat Chem Biol 2:33–38

    CAS  PubMed  Google Scholar 

  • Fatima N, Anis M (2011) Thidiazuron induced high frequency axillary shoot multiplication in Withania somnifera L. Dunal. J Med Plant Res 5:6681–6687

    CAS  Google Scholar 

  • Furmanowa M, Gajdzis–Kuls D, Ruszkowska J et al (2001) In vitro propagation of Withania somnifera and isolation of withanolides with immunosuppressive activity. Planta Med 67:146–149

    CAS  PubMed  Google Scholar 

  • Ghimire BK, Seong ES, Kim KH, Lamsal K, Yu CY, Chung M (2010) Direct shoot organogenesis from petiole and leaf discs of Withania somnifera (L.) Dunal. Afr J Biotechnol 9:7453–7461

    CAS  Google Scholar 

  • Ghosal S, Lal J, Srivatava R, Battacharya R, Upadhyay SN, Jaiswal AK, Chattopadhyay U (1989) Anti-stress activity of sitoindosides IX and X, new C-27 glycowithanolides from Withania somnifera. Phytother Res 3:201–209

    CAS  Google Scholar 

  • Glotter E (1991) Withanolides and related ergostane-type sterols. Nat Prod Rep 8:415–440

    CAS  PubMed  Google Scholar 

  • Glotter E, Abraham A, Gunzberg G, Kirson I (1977) Naturally occurring steroidal lactones with a 17 α–oriented side chain. Structure of withanolide E and related compounds. J Chem Soc 1:341–346

    Google Scholar 

  • Gomez GS, Pelacho AM, Gene A (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715

    Google Scholar 

  • Grin B, Mahammad S, Wedig T, Megan MC, Tsai L, Harald H, Goldman RD (2012) Withaferin A alters intermediate filament organization, cell shape and behavior. PLoS One 7:e39065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross NJ (2004) Anticholinergic bronchodilatators. In: Page CP, Barnes PJ (eds) Pharmacology and therapeutics of asthma and COPD, vol 161, Handbook of experimental pharmacology. Springer, Berlin, pp 37–52

    Google Scholar 

  • Grover A, Samuel G, Bisaria VS, Sundar D (2011) Non–nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti–herpetic mode of action of herbal drug withaferin A. BMC Bioinformatics 12:S13–S32

    Google Scholar 

  • Grover A, Agarwal V, Shandilya A, Bisaria VS, Sundar D (2013) Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera. J Biosci Bioeng. doi:10.1016/j.jbiosc.2012.12.011

    PubMed  Google Scholar 

  • Gupta P, Akhtar N, Tewari SK, Sangwan RS, Trivedi PK (2011) Differential expression of farnesyl diphosphate synthase gene from Withania somnifera in different chemotypes and in response to elicitors. Plant Growth Regul 65:93–100

    CAS  Google Scholar 

  • Gupta N, Sharma P, Santosh KRJ, Vishwakarma RK, Khan BM (2012) Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol Biol Rep 39:8803–8812

    CAS  PubMed  Google Scholar 

  • Gupta P, Akhtar N, Tewari SK, Sangwan RS, Trivedi PK (2013) Cloning and characterization of 2-C methyl farnesyl-δ-erythritol-4-phosphate pathway genes for isoprenoid biosynthesis from Indian ginseng, Withania somnifera. Protoplasma 250:285–295

    CAS  PubMed  Google Scholar 

  • Hampel D, Mosandl A, WĂĽst M (2005) Biosynthesis of mono– and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305–311

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Nakajima K, Ongena G, Yamada Y (1992) Two tropinone reductase with distinct stereospecificities from cultured roots of Hyoscyamus niger. Plant Physiol 100:836–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heble MR (1985) Multiple shoot cultures: a viable alternative in vitro system for the production of known and new biologically active plant constituents. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 281–289

    Google Scholar 

  • Ichikawa H, Takada Y, Shishodia S, Jayaprakasam B, Nair MG, Aggarwal BB (2006) Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-ÎşB (NF-ÎşB) activation and NF-ÎşB-regulated gene expression. Mol Cancer Ther 5:1434–1445

    CAS  PubMed  Google Scholar 

  • Ilayperuma I, Ratnasooriya WD, Weerasooriya TR (2002) Effect of Withania somnifera root extract on sexual behaviour of male rats. Asian J Androl 4:295–298

    CAS  PubMed  Google Scholar 

  • Iuvone T, Esposito G, Capasso F, Izzo A (2003) Induction of nitric oxide synthase expression by Withania somnifera in macrophages. Life Sci 72:1617–1625

    CAS  PubMed  Google Scholar 

  • Jadhav SK, Patel KA, Dholakia BB, Khan BM (2012) Structural characterization of a flavonoid glycosyltransferase from Withania somnifera. Bioinformation 8:943–949

    PubMed  PubMed Central  Google Scholar 

  • Jain SK (1991) Dictionary of Indian folk medicine and ethnobotany: a reference manual of man–plant relationships, ethnic groups and ethnobotanists in India. Deep Publications, New Delhi, p 189

    Google Scholar 

  • Jana CK, Hoecker J, Woods TM, Jessen HJ, Neuburger M, Gademann K (2011) Synthesis of withanolide A, biological evaluation of its neuritogenic properties, and studies on secretase inhibition. Angew Chem 50:8407–8411

    CAS  Google Scholar 

  • Jayaprakasam B, Zhang Y, Seeram NP, Nair MG (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74:125–132

    CAS  PubMed  Google Scholar 

  • Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron 60:3109–3121

    CAS  Google Scholar 

  • Kai GY, Li L, Jiang YX, Yan XM, Zhang Y, Lu X, Liao P, Chen JB (2009) Molecular cloning, characterization of two tropinone reductases in Anisodus acutangulus and enhancement of tropane alkaloids production in AaTRI–transformed hairy roots. Biotechnol Appl Biochem 54:177–186

    CAS  PubMed  Google Scholar 

  • Kai GY, Yang S, Luo XQ, Zhou WT, Fu XQ, Zhang A, Zhang Y, Xiao JB (2011) Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol 11:43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaileh M, Berghe WV, Heyerick A, Horion J, Piette J, Libert C, De KD, Essawi T, Haegeman G (2007) Withaferin A strongly elicits IÎşB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264

    CAS  PubMed  Google Scholar 

  • Kaul MK, Kumar A, Ahuja A, Mir BA, Suri KA, Qazi GN (2009) Production dynamics of withaferin A in Withania somnifera Dunal complex. Nat Prod Res 23:1304–1311

    CAS  PubMed  Google Scholar 

  • Kaur R, Ahuja AK, Gupta BK (2004) Nutritional evaluation of fodder based total mixed ration. Indian J Anim Nutr 21:60–62

    Google Scholar 

  • Keiner R, Kaiser H, Nakajima K, Hashimoto T, Dräger B (2002) Molecular cloning, expression and characterization of tropinone reductase II, an enzyme of the SDR family in Solanum tuberosum (L.). Plant Mol Biol 48:299–308

    CAS  PubMed  Google Scholar 

  • Khanna KL, Schwarting AE, Rother A, Bobbit JM (1961) Occurrence of tropine and pseudotropine in Withania somnifera. Lloydia 24:179–181

    Google Scholar 

  • Khedgikar V, Kushwaha P, Gautam J, Verma A, Changkija B, Kumar A, Sharma S, Nagar GK, Singh D, Trivedi PK, Sangwan NS, Mishra PK, Trivedi R (2013) Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis. doi:10.1038/cddis.2013.294

    PubMed  PubMed Central  Google Scholar 

  • Kinghorn AD, Su BN, Jang DS, Chang LC, Lee D, Gu J–Q, Carcanche BEJ, Pawlus AD, Lee SK, Park EJ, Cuendet M, Gills JJ, Bhat K, Park H–S, Mata GE, Song LL, Jang M, Pezzuto J (2004) Natural inhibitors of carcinogenesis. Plant Med 70:691–705

    CAS  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Brit J Pharmacol 144:961–971

    CAS  Google Scholar 

  • Kumar J, Gupta P (2008) Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotech Rep 2:93–112

    Google Scholar 

  • Kumar V, Murthy KNC, Bhamidi S, Sudha CG, Ravishankar GA (2005) Genetically modified hairy roots of Withania somnifera Dunal: a potent source of rejuvenating principles. Rejuvenation Res 8:37–45

    CAS  PubMed  Google Scholar 

  • Kumar A, Mir BA, Sehgal D, Koul S, Dar TH, Maharaj KK, Soom NR, Qazi GN (2011) Utility of multidisciplinary approach for genome diagnostics of cultivated and wild germplasm resources of medicinal Withania somnifera, and status of new species, W. ashwagandha, in the cultivated taxon. Plant Syst Evol 291:141–151

    Google Scholar 

  • Kundu AB, Mukherjee A, Dey AK (1976) A new withanolide from the seeds of Withania-somnifera. Ind J Chem 14:434–435

    Google Scholar 

  • Kushwaha AK, Sangwan NS, Trivedi PK, Negi AS, Misra L, Sangwan RS (2013b) Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns. PLoS ONE 8(9):e74777. doi:10.1371/journal.pone.0074777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha AK, Sangwan NS, Tripathi S, Sangwan RS (2013a) Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf. Gene 516:238–247

    CAS  PubMed  Google Scholar 

  • Kushwaha S, Soni VK, Singh PK, Bano N, Kumar A, Sangwan RS, Misra–Bhattacharya S (2012) Withania somnifera chemotypes NMITLI 101R, NMITLI 118R, NMITLI 128R and withaferin A protect Mastomys coucha from Brugia malayi infection. Parasite Immunol 34:199–209

    CAS  PubMed  Google Scholar 

  • Lal P, Misra L, Sangwan RS, Tuli R (2006) New withanolides from fresh berries of Withania somnifera. Z Naturfors 61:1143–1147

    CAS  Google Scholar 

  • Leete E (1990) Recent development in biosynthesis of the tropane alkaloids. Planta Med 56:339–352

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    CAS  PubMed  Google Scholar 

  • Lockley WJS, Rees HH, Goodwin TW (1976) Biosynthesis of steroidal withanolides in Withania somnifera. Phytochemistry 15:937–939

    CAS  Google Scholar 

  • Luvone T, Esposito G, Capasso F, Izzo A (2003) Induction of nitric oxide synthase expression by Withania somnifera in macrophages. Life Sci 72:1617–1625

    Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007a) Purification and characterization of a novel glucosyltransferase specific to 27b–hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochim Biophys Acta 1774:1199–1207

    CAS  PubMed  Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007b) Purification and physico–kinetic characterization of 3β-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response. Biochim Biophys Acta 1774:392–402

    CAS  PubMed  Google Scholar 

  • Malik F, Kumar A, Bhushan S, Khan S, Bhatia A et al (2007) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL–60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12:2115–2133

    CAS  PubMed  Google Scholar 

  • Mandal C, Dutta A, Mallick A, Chandra S, Misra L, Sangwan RS, Mandal C (2008) Withaferin A induces apoptosis by activating p38 mitogen–activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin in a transcription–dependent manner through mitochondrial death cascade. Apoptosis 13:1450–1464

    CAS  PubMed  Google Scholar 

  • Manickam VS, Mathavan RE, Antonisamy R (2000) Regeneration of Indian Ginseng plantlets from stem callus. Plant Cell Tissue Organ Cult 62:181–185

    Google Scholar 

  • Mathur RS, Gupta SK et al (2006) Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. J Ethnopharmacol 105:336–341

    PubMed  Google Scholar 

  • Mayola E, Gallerne C, Esposti DD et al (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down–regulation of Bcl-2. Apoptosis 16:1014–1027

    CAS  PubMed  Google Scholar 

  • Mishra S, Sangwan RS, Bansal S, Sangwan NS (2012) Efficient transgenic plant production of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma. doi:10.1007/s00709-012-0428-0

    Google Scholar 

  • Misra LN, Lal P, Sangwan RS, Sangwan NS, Uniyal GC, Tuli R (2005) Unusually sulfated and oxygenated steroids from Withania somnifera. Phytochemistry 66:2702–2707

    CAS  PubMed  Google Scholar 

  • Misra L, Lal P, Chaurasiya ND, Sangwan RS, Sinha S, Tuli R (2008a) Selective reactivity of 2-mercaptoethanol with 5β,6β-epoxide in steroids from Withania somnifera. Steroids 73:245–251

    CAS  PubMed  Google Scholar 

  • Misra LN, Mishra P, Pandey A, Sangwan RS, Sangwan NS, Tuli R (2008b) Withanolides from Withania somnifera roots. Phytochemistry 69:1000–1004

    CAS  PubMed  Google Scholar 

  • Misra LN, Misra P, Pandey A, Sangwan RS, Sangwan NS (2012) 1, 4 dioxane and ergosterol derivatives from Withania somnifera roots. J Asian Nat Prod Res 14:39–45

    CAS  PubMed  Google Scholar 

  • Mondal S, Mandal C, Sangwan RS, Chandra S, Mandal C (2010) Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol Cancer 9:239

    PubMed  PubMed Central  Google Scholar 

  • Mondal S, Bhattacharya K, Mallick A, Sangwan R, Mandal C (2012) Bak compensated for Bax in p53–null cells to release cytochrome c for the initiation of mitochondrial signaling during Withanolide D-induced apoptosis. PLoS One 7:e34277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Int Plant Biol 50:975–981

    CAS  Google Scholar 

  • Nagella P, Murthy HN (2010) Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresour Technol 101:6735–6739

    CAS  PubMed  Google Scholar 

  • Nagella P, Murthy HN (2012) Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crop Prod 35:241–243

    Google Scholar 

  • Nakajima K, Hashimoto T, Yamada Y (1993) Plant Gene Register cDNA encoding tropinone reductase–ll from Hyoscyamus niger. Plant Physiol 103:1465–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak SA, Kumar S, Satapathy K, Moharana A, Behera B (2013) In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physiol Plant. doi:10.1007/s11738-012-1063-2

    Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as source of new drugs over the period. J Nat Prod 66:1022–1037

    CAS  PubMed  Google Scholar 

  • Nur–e–Alam M, Yousaf M, Qureshi S, Baig I, Nasim S (2003) A novel dimeric podophyllotoxin–type lignan and a new withanolide from Withania coagulans. Helv Chim Acta 86:607–614

    Google Scholar 

  • Oh S, Park S, van Nocker S (2008) Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet 4:e100007

    Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of βglucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Ortholand JY, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8:271–280

    CAS  PubMed  Google Scholar 

  • Pandey V, Misra P, Chaturvedi P, Mishra MK, Trivedi PK, Tuli R (2010) Agrobacterium tumefaciens–mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Plant Cell Rep 29:133–141

    CAS  PubMed  Google Scholar 

  • Praveen N, Murthy HN (2013) Withanolide A production from Withania somnifera hairy root cultures with improved growth by altering the concentrations of macro elements and nitrogen source in the medium. Acta Physiol Plant 35:811–816

    CAS  Google Scholar 

  • Priyandoko D, Ishii T, Kaul SC, Wadhwa R (2011) Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite. PLoS One 6:e19552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman AU, Jamal SA, Choudhary MI, Asif E (1993) New withanolides from Withania somnifera. J Nat Prod 56:1000–1006

    Google Scholar 

  • Rana S, Dhar N, Bhat WW, Razdan S, Khan S, Dhar RS, Dutt P, Lattoo SK (2012) A 12 deoxy withastramonolide–rich somaclonal variant in Withania somnifera (L.) Dunal – molecular cytogenetic analysis and significance as a chemotypic resource. In Vitro Cell Dev Biol Plant 48:546–554

    Google Scholar 

  • Rana S, Lattoo SK, Dhar N, Razdan S, Bhat WW (2013) NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L.) dunal. PLoS ONE 8(2):e57068. doi:10.1371/journal.pone.0057068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rani G, Virk GS, Nagpal A (2003) Callus induction and plantlet regeneration in Withania somnifera (L.) Dunal. In Vitro Cell Dev Biol Plant 39:468–474

    Google Scholar 

  • Rasool M, Marylatha L, Varalakshmi P (2000) Effect of Withania somnifera on lysosomal acid hydrolases in adjuvant-induced arthritis in rats. Pharma Pharmacol Commun 6:187–190

    CAS  Google Scholar 

  • Ray AB, Gupta M (1994) Withasteroids, a growing group of naturally occurring steroidal lactone. Prog Chem Org Nat Prod 63:1–106

    CAS  Google Scholar 

  • Ray S, Jha S (1999) Withanolide synthesis in cultures of Withania somnifera transformed with Agrobacterium tumefaciens. Plant Sci 146:1–7

    CAS  Google Scholar 

  • Razdan S, Bhat WW, Rana S, Dhar N, Lattoo SK, Dhar RS, Vishwakarma RA (2013) Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 40:905–916

    CAS  PubMed  Google Scholar 

  • Richter U, Rothe G, Fabian AK, Rahfeld B, Dräger B (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56:645–652

    CAS  PubMed  Google Scholar 

  • Rohmer M (2003) Mevalonate–independent methylerythritol phosphate pathway for isoprenoid biosynthesis elucidation and distribution. Pure Appl Chem 75:375–387

    CAS  Google Scholar 

  • Roja G, Heble MR, Sipahimalini AT (1991) Tissue cultures of Withania somnifera: morphogenesis and withanolide synthesis. Phytother Res 5:185–187

    CAS  Google Scholar 

  • Rout JR, Sahoo S, Das R (2011) An attempt to conserve Withania somnifera (l.) Dunal – a highly essential medicinal plant, through in vitro callus culture. Pak J Bot 43:1837–1842

    Google Scholar 

  • Sabir F (2011) Metabolic and biochemical studies on in vitro raised tissue systems of medicinal plant Withania somnifera Dunal. Ph.D. thesis

    Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Tuli R, Sangwan RS (2007) Rapid micropropagation of Withania somnifera L. accessions from axillary meristems. J Herb Spices Med Plants 13:123–133

    CAS  Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Sangwan RS (2008) In vitro withanolide production by Withania somnifera L. Cultures. Z Naturforsch C 63:409–412

    CAS  PubMed  Google Scholar 

  • Sabir F, Kumar A, Tiwari P, Pathak N, Sangwan RS, Bhakuni RS, Sangwan NS (2010) Bioconversion of artemisinin to its non-peroxidic derivative deoxyartemisinin through suspension cultures of (Withania somnifera Dunal). Z Naturforsch C 65:607–612

    CAS  PubMed  Google Scholar 

  • Sabir F, Sangwan RS, Singh J, Misra L, Pathak N, Sangwan NS (2011) Biotransformation of withanolides by cell suspension cultures of (Withania somnifera Dunal). Plant Biotechnol Rep 5:127–134

    Google Scholar 

  • Sabir F, Sangwan RS, Kumar R, Sangwan NS (2012) Salt stress induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian Ginseng (Withania somnifera Dunal). J Plant Growth Reg 31:537–548

    CAS  Google Scholar 

  • Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS (2013) Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma. doi:10.1007/s00709-012-0438-y

    PubMed  Google Scholar 

  • Sangwan NS, Farooqi AHA, Sabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Misra LN, Lal P, Uniyal GC, Sharma R, Sangwan NS, Suri KA, Qazi GN, Tuli R (2004a) Phytochemical variability in commercial herbal products and preparations of Withania somnifera (Ashwagandha). Curr Sci 86:461–465

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Misra LN, Suri KA, Qazi GN, Tuli R, Lal P, Uniyal GC, Sangwan NS, Srivastava AK (2004b) Process for isolation of withaferin A from plant materials and products therefrom. US Patent 7,108,870, 2006

    Google Scholar 

  • Sangwan RS, Chauraslya ND, Misra LN, Lal P, Uniyal GC, Sangwan NS (2005) An improved process for isolation of withaferin A from plant materials and products therefrom. US Patent 7108870

    Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Uniyal GC, Tuli R, Sangwan NS (2007) Withanolide A biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera Dunal), a main medicinal plant in ayurveda. Chem Pharma Bull 55:1371–1375

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Tuli R, Sangwan NS (2008) Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol Plant 133:278–287

    CAS  PubMed  Google Scholar 

  • Sato Y, Ito Y, Okada S, Murakami M, Abe H (2003) Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahed Lett 44:7035–7037

    CAS  Google Scholar 

  • Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Bigal V (1997) Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affect cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int 30:181–190

    CAS  PubMed  Google Scholar 

  • Sharada M, Ahuja A, Suri KA, Vij SP, Khajuria K, Verama V, Kumar A (2007) Withanolide production by in vitro cultures of Withania somnifera (L) Dunal and its association with differentiation. Biol Plant 51:161–164

    CAS  Google Scholar 

  • Sharma LK, Madina BR, Chaturvedi P, Sangwan RS, Tuli R (2007) Molecular cloning and characterization of one member of 3 β–hydroxy sterol glucosyltransferase gene family in Withania somnifera. Arch Biochem Biophys 460:48–55

    CAS  PubMed  Google Scholar 

  • Siddique NA, Bari MA, Shahnewaz S, Rahman MH, Hasan MR, Khan MSI, Islam MS (2004) Plant regeneration of Withania somnifera (L.) Dunal (Ashwagandha) from nodal segments derived callus an endangered medicinal plant in Bangladesh. J Biol Sci 4:219–223

    Google Scholar 

  • Sidhu OP, Annarao S, Chatterjee S, Tuli R, Roy R, Khetrapal CL (2011) Metabolic alterations of withania somnifera Dunal fruits at different developmental stages by NMR spectroscopy. Phytochem Anal 22:492–502

    CAS  PubMed  Google Scholar 

  • Singh AK, Varshney R, Sharma M, Agarwal SS, Bansal KC (2005) Regeneration of plants from alginate–encapsulated shoot tips of Withania somnifera (L.) Dunal, a medicinally important plant species. J Plant Physiol 163:220–223

    PubMed  Google Scholar 

  • Sivanadhan G, Arun M, Mayavan S, Rajesh M, Mariashibu TS, Manickavasagam SN, Ganapathi A (2012a) Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind Crop Prod 37:124–129

    Google Scholar 

  • Sivanadhan G, Arun M, Mayavan S, Rajesh M, Jeyaraj M, Dev GK, Manickavasagam M, Selvaraj N, Ganapathi A (2012b) Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Withania somnifera (L.) Dunal. Appl Biochem Biotechnol 168:681–696

    Google Scholar 

  • Sivanesan I (2007) Direct regeneration from apical buds explants of Withania somnifera Dunal. Ind J Biotechnol 16:125–127

    Google Scholar 

  • Sorelle JA, Itoh T, Peng H, Kanak MA, Sugimoto K, Matsumoto S, Levy MF, Lawrence MC, Naziruddin B (2013) Withaferin A inhibits pro-inflammatory cytokine–induced damage to islets in culture and following transplantation. Diabetologia. doi:10.1007/s00125-012-2813-9

    PubMed  Google Scholar 

  • Stan SD, Zeng Y, Singh SV (2008) Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 60(Suppl 1):51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subbaraju GV, Vanisree M, Rao CV, Sivaramakrishna C, Sridhar P, Jayaprakasam B, Nair MG (2006) Ashwagandholide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod 69:1790–1792

    CAS  PubMed  Google Scholar 

  • Supe U, Dhote F, Roymon MG (2006) In vitro plant regeneration of Withania somnifera. Plant Tissue Cult Biotechnol 16:111–115

    Google Scholar 

  • Towler MJ, Weathers PJ (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26:2129–2136

    CAS  PubMed  Google Scholar 

  • Tuli R, Sangwan RS (2010) Ashwagandha (Withania somnifera) – a model Indian medicinal plant. Council of Scientific and Industrial Research (CSIR), Govt of India

    Google Scholar 

  • Tursunova RN, Maslennikova VA, Abubakirov NK (1977) Withanolides in the vegetable kingdom. Chem Nat Comp 13:131–138

    Google Scholar 

  • Van Klink J, Beckar H, Anderson S, Boland W (2003) Biosynthesis of anthecotuloide, an irregular sesquiterpene lactone from Anthemis cotula L. (Asteraceae) via a non-farnesyl diphosphate route. Org Biomol Chem 1:1503–1508

    PubMed  Google Scholar 

  • Vitali G, Conte L, Nicoletti M (1996) Withanolide composition and in vitro culture of Italian Withania somnifera. Planta Med 62:287–288

    CAS  PubMed  Google Scholar 

  • Wadegaonkar PA, Bhagwat KA, Rai MK (2005) Direct rhizogenesis and establishment of fast growing normal root organ culture of Withania somnifera Dunal. Plant Cell Tissue Organ Cult 84:223–225

    Google Scholar 

  • Wang HC, Tsai YL, Wu YC, Chang FR, Liu MH et al (2012) Withanolides-induced breast cancer cell death is correlated with their ability to inhibit heat protein 90. PLoS One 7:e37764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasnik NG, Muthusamy M, Chellappan S, Vaidhyanathan V, Pulla R, Senthil K, Yang DC (2009) Establishment of in vitro root cultures and analysis of secondary metabolites in Indian ginseng – Withania somnifera. Korean J Plant Res 22:584–591

    Google Scholar 

  • Yamada Y, Hashimoto T, Endo T, Yukimune Y, Cono J, Hamaguchi N, Drager B (1990) Biochemistry of alkaloid production in vitro. In: Charlwood RV, Rhodes MJC (eds) Secondary products from plant tissue culture. Oxford Science Publications, Oxford

    Google Scholar 

  • Yang H, Shi G, Dou Q (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71:426–437

    CAS  PubMed  Google Scholar 

  • Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK (2011) Withaferin A enhances radiation–induced apoptosis in Caki cells through induction of reactive oxygen species, Bcl–2 downregulation and Akt inhibition. Chem Biol Interact 190:9–15

    CAS  PubMed  Google Scholar 

  • Yu PLC, El-Olemy MM, Stohs ST (1974) A phytochemical investigation of Withania somnifera tissue cultures. J Nat Prod 37:593–597

    CAS  Google Scholar 

  • Zayed R, Wink M (2004) Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suaveolens (Solanaceae). Z Naturfor 59:863–867

    CAS  Google Scholar 

  • Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Awadesh Srivastava and the scholars of the laboratory who have worked on Ashwagandha and contributed to various dissertations, thesis, and publications. They gratefully acknowledge New Millennium Indian Technology Leadership Initiative (NMITLI), New Delhi, and Department of Biotechnology (DBT), New Delhi (BT/PR10715/AGR/36/602/2008), for providing the financial grants to carry out various studies in author’s laboratory producing several observations cited in the article. They also gratefully acknowledge the constant encouragement and support provided by Director CSIR-CIMAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam S. Sangwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sangwan, N.S., Sangwan, R.S. (2014). Secondary Metabolites of Traditional Medical Plants: A Case Study of Ashwagandha (Withania somnifera). In: Nick, P., Opatrny, Z. (eds) Applied Plant Cell Biology. Plant Cell Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41787-0_11

Download citation

Publish with us

Policies and ethics