Skip to main content

Introduction

  • Chapter
  • First Online:
Subtelomeres

Abstract

Dynamic, polymorphic, problematic yet intriguing are the general view of the genomic region near the ends of chromosomes. Unlike the generally conserved caps of chromosome ends, the telomeres, for which our understanding of their biology has advanced greatly in recent years, the adjacent telomere-associated sequences (TAS) or subtelomeres remain an enigma. This is in large part due to the technical difficulties in working with repeated sequence regions of the genome both experimentally and in genome projects. The repetitive nature makes it difficult to observe a signal from a specific chromosome end among the noise of all the other ends that look and behave similarly. It also has precluded complete assembly of the regions in genome projects. In virtually all eukaryotes and some prokaryotes, linear chromosomes have dynamic and polymorphic subtelomeric regions. In many cases, a great deal of important biology of the organism is encoded in and regulated by the subtelomeric regions. One generality is that the region tends to encode for genes involved in interacting with the extracellular environment though this is not universal. Recombination, chromatin, gene density, and other properties of the region differ from those of the core of the genome in many organisms, though the specific differences vary between organisms. Perhaps the most well-understood subtelomeres are in the budding yeast Saccharomyces cerevisiae, while the epitome of adaptive use of the properties of the region is found in parasites, such as Plasmodium falciparum and Trypanosoma brucei, causing malaria and sleeping sickness. These parasites utilize the region to escape their hosts’ immune systems through generation of diversity and exquisite control of surface antigen expression. A great deal has been learned from comparison between subtelomeres in different organisms, and the interest in subtelomeres is growing. This book does not cover every aspect of subtelomeres in every organism where they are studied, but provides a broad coverage of the field of subtelomeres in diverse organisms from bacteria to yeast and fungi through plants, insects, parasites, and humans. It should serve as an entry point into the field, hopefully generating an interest in this fascinating region of genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, R. D., Nash, T. E., & Wellems, T. E. (1991). Telomeric location of Giardia rDNA genes. Molecular and Cellular Biology, 11, 3326–3330.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alsford, S., Kawahara, T., Isamah, C., & Horn, D. (2007). A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Molecular Microbiology, 63, 724–736.

    Article  CAS  PubMed  Google Scholar 

  • Barry, J. D., Ginger, M. L., Burton, P., & McCulloch, R. (2003). Why are parasite contingency genes often associated with telomeres? International Journal for Parasitology, 33, 29–45.

    Article  CAS  PubMed  Google Scholar 

  • Barry, J. D., Hall, J. P., & Plenderleith, L. (2012). Genome hyperevolution and the success of a parasite. Annals of the New York Academy of Sciences, 1267, 11–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baur, J. A., Zou, Y., Shay, J. W., & Wright, W. E. (2001). Telomere position effect in human cells. Science, 292, 2075–2077.

    Article  CAS  PubMed  Google Scholar 

  • Becker, M., Aitcheson, N., Byles, E., Wickstead, B., Louis, E., & Rudenko, G. (2004). Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. Genome Research, 14, 2319–2329.

    Article  CAS  PubMed  Google Scholar 

  • Biessmann, H., Carter, S. B., & Mason, J. M. (1990). Chromosome ends in Drosophila without telomeric DNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 87, 1758–1761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biessmann, H., Kobeski, F., Walter, M. F., Kasravi, A., & Roth, C. W. (1998). DNA organization and length polymorphism at the 2L telomeric region of Anopheles gambiae. Insect Molecular Biology, 7, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Brown, C. A., Murray, A. W., & Verstrepen, K. J. (2010). Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Current Biology, 20, 895–903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, W. R., Mac, K. P., Villasante, A., Spurr, N., Buckle, V. J., & Dobson, M. J. (1990). Structure and polymorphism of human telomere-associated DNA. Cell, 63, 119–132.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, M., Celenza, J. L., & Eng, F. J. (1985). Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Molecular and Cellular Biology, 5, 2894–2902.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castano, I., Pan, S. J., Zupancic, M., Hennequin, C., Dujon, B., & Cormack, B. P. (2005). Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Molecular Microbiology, 55, 1246–1258.

    Article  CAS  PubMed  Google Scholar 

  • Chan, C. S. M., & Tye, B.-K. (1983a). A family of Saccharomyces cerevisiae repetitive autonomously replicating sequences that have very similar genomic environments. Journal of Molecular Biology, 168, 505–523.

    Article  CAS  PubMed  Google Scholar 

  • Chan, C. S. M., & Tye, B.-K. (1983b). Organization of DNA sequences and replication origins at yeast telomeres. Cell, 33, 563–573.

    Article  CAS  PubMed  Google Scholar 

  • Charron, M. J., Read, E., Haut, S. R., & Michels, C. A. (1989). Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics, 122, 307–316.

    CAS  PubMed  Google Scholar 

  • Corcoran, L. M., Thompson, J. K., Walliker, D., & Kemp, D. J. (1988). Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell, 53, 807–813.

    Article  CAS  PubMed  Google Scholar 

  • Cross, S., Lindsey, J., Fantes, J., McKay, S., McGill, N., & Cooke, H. (1990). The structure of a subterminal repeated sequence present on many human chromosomes. Nucleic Acids Research, 18, 6649–6657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crozatier, M., Van, D. P. L., Johnson, P. J., Gommers, A. J., & Borst, P. (1990). Structure of a telomeric expression site for variant specific surface antigens in Trypanosoma brucei. Molecular and Biochemical Parasitology, 42, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Cubillos, F. A., Billi, E., Zorgo, E., Parts, L., Fargier, P., Omholt, S., et al. (2011). Assessing the complex architecture of polygenic traits in diverged yeast populations. Molecular Ecology, 20, 1401–1413.

    Article  PubMed  Google Scholar 

  • De Las Penas, A., Pan, S. J., Castano, I., Alder, J., Cregg, R., & Cormack, B. P. (2003). Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes & Development, 17, 2245–2258.

    Article  Google Scholar 

  • Donelson, J. E. (1995). Mechanisms of antigenic variation in Borrelia hermsii and African trypanosomes. Journal of Biological Chemistry, 270, 7783–7786.

    CAS  PubMed  Google Scholar 

  • Dore, E., Pace, T., Ponzi, M., Picci, L., & Frontali, C. (1990). Organization of subtelomeric repeats in Plasmodium berghei. Molecular and Cellular Biology, 10, 2423–2427.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dore, E., Pace, T., Picci, L., Pizzi, E., Ponzi, M., & Frontali, C. (1994). Dynamics of telomere turnover in Plasmodium berghei. Molecular Biology Reports, 20, 27–33.

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed, N. M., Myler, P. J., Blandin, G., Berriman, M., Crabtree, J., Aggarwal, G., et al. (2005). Comparative genomics of trypanosomatid parasitic protozoa. Science, 309, 404–409.

    Article  CAS  PubMed  Google Scholar 

  • Fairhead, C., & Dujon, B. (2006). Structure of Kluyveromyces lactis subtelomeres: Duplications and gene content. FEMS Yeast Research, 6, 428–441.

    Article  CAS  PubMed  Google Scholar 

  • Farman, M. L., & Leong, S. A. (1995). Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. Genetics, 140, 479–492.

    CAS  PubMed  Google Scholar 

  • Fischer, G., Kyriacou, A., Decaris, B., & Leblond, P. (1997). Genetic instability and its possible evolutionary implications on the chromosomal structure of Streptomyces. Biochimie, 79, 555–558.

    Article  CAS  PubMed  Google Scholar 

  • Flint, J., Bates, G. P., Clark, K., Dorman, A., Willingham, D., Roe, B. A., et al. (1997). Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Human Molecular Genetics, 6, 1305–1313.

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Junior, L. H., Bottius, E., Pirrit, L. A., Deitsch, K. W., Scheidig, C., Guinet, F., et al. (2000). Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature, 407, 1018–1022.

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara, H., Sor, F., Drissi, R., Dinouel, N., Miyakawa, I., Rousset, S., et al. (1993). Linear mitochondrial DNAs of yeasts: Frequency of occurrence and general features. Molecular and Cellular Biology, 13, 2309–2314.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., et al. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 438, 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  • Ganal, M. W., Lapitan, N. L., & Tanksley, S. D. (1991). Macrostructure of the tomato telomeres. Plant Cell, 3, 87–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganal, M. W., Broun, P., & Tanksley, S. D. (1992). Genetic mapping of tandemly repeated telomeric DNA sequences in tomato (Lycopersicon esculentum). Genomics, 14, 444–448.

    Article  CAS  PubMed  Google Scholar 

  • Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., et al. (1996). Life with 6000 genes. Science, 274, 546, 563–567.

    Article  Google Scholar 

  • Gottschling, D. E., Aparicio, O. M., Billington, B. L., & Zakian, V. A. (1990). Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription. Cell, 63, 751–762.

    Article  CAS  PubMed  Google Scholar 

  • Guizetti, J., & Scherf, A. (2013). Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cellular Microbiology, 15, 718–726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashida, K., Hara, Y., Abe, T., Yamasaki, C., Toyoda, A., Kosuge, T., et al. (2012). Comparative genome analysis of three eukaryotic parasites with differing abilities to transform leukocytes reveals key mediators of Theileria-induced leukocyte transformation. MBio, 3, e00204–e00212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hertz-Fowler, C., Figueiredo, L. M., Quail, M. A., Becker, M., Jackson, A., Bason, N., et al. (2008). Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS ONE, 3, e3527.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hinnebusch, J., Bergstrom, S., & Barbour, A. G. (1990). Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Molecular Microbiology, 4, 811–820.

    Article  CAS  PubMed  Google Scholar 

  • Horn, D., & Barry, J. D. (2005). The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Research, 13, 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz, H., & Haber, J. E. (1984). Subtelomeric regions of yeast chromosomes contain a 36 base-pair tandemly repeated sequence. Nucleic Acids Research, 12, 7105–7121.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horowitz, H., Thorburn, P., & Haber, J. E. (1984). Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae. Molecular and Cellular Biology, 4, 2509–2517.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitten, T., & Barbour, A. G. (1990). Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proceedings of the National Academy of Sciences USA, 87, 6077–6081.

    Article  CAS  Google Scholar 

  • Kuo, H. F., Olsen, K. M., & Richards, E. J. (2006). Natural variation in a subtelomeric region of Arabidopsis: Implications for the genomic dynamics of a chromosome end. Genetics, 173, 401–417.

    Article  CAS  PubMed  Google Scholar 

  • Laroche, T., Martin, S. G., Gotta, M., Gorham, H. C., Pryde, F. E., Louis, E. J., et al. (1998). Mutations of yeast Ku genes disrupts the subnuclear organization of telomeres. Current Biology, 8, 653–656.

    Article  CAS  PubMed  Google Scholar 

  • Le, B. S., Korman, S. H., & Van, D. P. L. (1991). Frequent rearrangements of rRNA-encoding chromosomes in Giardia lamblia. Nucleic Acids Research, 19, 4405–4412.

    Article  Google Scholar 

  • Leblond, P., Fischer, G., Francou, F. X., Berger, F., Guerineau, M., & Decaris, B. (1996). The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. Molecular Microbiology, 19, 261–271.

    Article  CAS  PubMed  Google Scholar 

  • Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., et al. (2009). Population genomics of domestic and wild yeasts. Nature, 458, 337–341.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liti, G., & Louis, E. J. (2012). Advances in quantitative trait analysis in yeast. PLoS Genetics, 8, e1002912.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louis, E. J., & Borts, R. H. (1995). A complete set of marked telomeres in Saccharomyces cerevisiae for physical mapping and cloning. Genetics, 139, 125–136.

    CAS  PubMed  Google Scholar 

  • Louis, E. J., & Haber, J. E. (1990a). Mitotic recombination among subtelomeric Y’ repeats in Saccharomyces cerevisiae. Genetics, 124, 547–559.

    CAS  PubMed  Google Scholar 

  • Louis, E. J., & Haber, J. E. (1990b). The subtelomeric Y’ repeat family in Saccharomyces cerevisiae: An experimental system for repeated sequence evolution. Genetics, 124, 533–545.

    CAS  PubMed  Google Scholar 

  • Louis, E. J., Naumova, E. S., Lee, A., Naumov, G., & Haber, J. E. (1994). The chromosome end in yeast: Its mosaic nature and influence on recombinational dynamics. Genetics, 136, 789–802.

    CAS  PubMed  Google Scholar 

  • Marvin, M. E., Becker, M. M., Noel, P., Hardy, S., Bertuch, A. A., & Louis, E. J. (2009a). The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences. Genetics, 183, 453–467, 451SI–413SI.

    Google Scholar 

  • Marvin, M. E., Griffin, C. D., Eyre, D. E., Barton, D. B., & Louis, E. J. (2009b). Saccharomyces cerevisiae, yKu and subtelomeric core X sequences repress homologous recombination near telomeres as part of the same pathway. Genetics, 183, 441–451, 441SI–412SI.

    Google Scholar 

  • Mefford, H. C., & Trask, B. J. (2002). The complex structure and dynamic evolution of human subtelomeres. Nature Reviews Genetics, 3, 91–102.

    Article  CAS  PubMed  Google Scholar 

  • Mefford, H. C., Linardopoulou, E., Coil, D., van den Engh, G., & Trask, B. J. (2001). Comparative sequencing of a multicopy subtelomeric region containing olfactory receptor genes reveals multiple interactions between non- homologous chromosomes. Human Molecular Genetics, 10, 2363–2372.

    Article  CAS  PubMed  Google Scholar 

  • Moraes Barros, R. R., Marini, M. M., Antonio, C. R., Cortez, D. R., Miyake, A. M., Lima, F. M., et al. (2012). Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite Trypanosoma cruzi. BMC Genomics, 13, 229.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nosek, J., & Tomaska, L. (2003). Mitochondrial genome diversity: Evolution of the molecular architecture and replication strategy. Current Genetics, 44, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Nosek, J., Dinouel, N., Kovac, L., & Fukuhara, H. (1995). Linear mitochondrial DNAs from yeasts: Telomeres with large tandem repetitions. Molecular and General Genetics, 247, 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., et al. (2009). Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences USA, 106, 16333–16338.

    Article  CAS  Google Scholar 

  • Okazaki, S., Ishikawa, H., & Fujiwara, H. (1995). Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Molecular and Cellular Biology, 15, 4545–4552.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pace, T., Ponzi, M., Dore, E., Janse, C., Mons, B., & Frontali, C. (1990). Long insertions within telomeres contribute to chromosome size polymorphism in Plasmodium berghei. Molecular and Cellular Biology, 10, 6759–6764.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pace, T., Ponzi, M., Scotti, R., & Frontali, C. (1995). Structure and superstructure of Plasmodium falciparum subtelomeric regions. Molecular and Biochemical Parasitology, 69, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Ponzi, M., Pace, T., Dore, E., Picci, L., Pizzi, E., & Frontali, C. (1992). Extensive turnover of telomeric DNA at a Plasmodium berghei chromosomal extremity marked by a rare recombinational event. Nucleic Acids Research, 20, 4491–4497.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prabhu, A., Morrison, H. G., Martinez, C. R, 3rd, & Adam, R. D. (2007). Characterisation of the subtelomeric regions of Giardia lamblia genome isolate WBC6. International Journal for Parasitology, 37, 503–513.

    Article  CAS  PubMed  Google Scholar 

  • Pryde, F. E., & Louis, E. J. (1997). Saccharomyces cerevisiae telomeres. A review. Biochemistry-English Translation, 62, 1232–1241.

    CAS  Google Scholar 

  • Pryde, F. E., & Louis, E. J. (1999). Limitations of silencing at native yeast telomeres. EMBO Journal, 18, 2538–2550.

    Article  CAS  PubMed  Google Scholar 

  • Pryde, F. E., Gorham, H. C., & Louis, E. J. (1997). Chromosome ends: All the same under their caps. Current opinion in genetics & development, 7, 822–828.

    Article  CAS  Google Scholar 

  • Restrepo, B. I., Kitten, T., Carter, C. J., Infante, D., & Barbour, A. G. (1992). Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Molecular Microbiology, 6, 3299–3311.

    Article  CAS  PubMed  Google Scholar 

  • Riethman, H. C., Moyzis, R. K., Meyne, J., Burke, D. T., & Olson, M. V. (1989). Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial-chromosome vector. Proceedings of the National Academy of Sciences USA, 86, 6240–6244.

    Article  CAS  Google Scholar 

  • Riethman, H., Ambrosini, A., & Paul, S. (2005). Human subtelomere structure and variation. Chromosome Research, 13, 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Roth, C. W., Kobeski, F., Walter, M. F., & Biessmann, H. (1997). Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Molecular and Cellular Biology, 17, 5176–5183.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saiga, H., & Edstrom, J. E. (1985). Long tandem arrays of complex repeat units in Chironomus telomeres. EMBO Journal, 4, 799–804.

    CAS  PubMed  Google Scholar 

  • Saint, G. I., & Barbour, A. G. (1991). Antigenic variation in Borrelia. Research in Microbiology, 142, 711–717.

    Article  Google Scholar 

  • Scherf, A., Figueiredo, L. M., & Freitas-Junior, L. H. (2001). Plasmodium telomeres: A pathogen’s perspective. Current Opinion in Microbiology, 4, 409–414.

    Article  CAS  PubMed  Google Scholar 

  • Sykorova, E., Lim, K. Y., Kunicka, Z., Chase, M. W., Bennett, M. D., Fajkus, J., et al. (2003). Telomere variability in the monocotyledonous plant order Asparagales. Proceedings of the Biological Sciences, 270, 1893–1904.

    Article  CAS  Google Scholar 

  • Sykorova, E., Fajkus, J., Meznikova, M., Lim, K. Y., Neplechova, K., Blattner, F. R., et al. (2006). Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. American Journal of Botany, 93, 814–823.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Okazaki, S., & Fujiwara, H. (1997). A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Research, 25, 1578–1584.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomaska, L., McEachern, M. J., & Nosek, J. (2004). Alternatives to telomerase: Keeping linear chromosomes via telomeric circles. FEBS Letters, 567, 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Trask, B. J., Friedman, C., Martingallardo, A., Rowen, L., Akinbami, C., Blankenship, J., et al. (1998). Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Human Molecular Genetics, 7, 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Underwood, A. P., Louis, E. J., Borts, R. H., Stringer, J. R., & Wakefield, A. E. (1996). Pneumocystis carinii telomere repeats are composed of TTAGGG and the subtelomeric sequence contains a gene encoding the major surface glycoprotein. Molecular Microbiology, 19, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Upcroft, P., Chen, N. H., & Upcroft, J. A. (1997). Telomeric organization of a variable and inducible toxin gene family in the ancient eukaryote Giardia duodenalis. Genome Research, 7, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Vershinin, A. V., Schwarzacher, T., & Heslopharrison, J. S. (1995). The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell, 7, 1823–1833.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wada, M., & Nakamura, Y. (1996). Antigenic variation by telomeric recombination of major-surface-glycoprotein genes of Pneumocystis carinii. Journal of Eukaryotic Microbiology, 43, S8.

    Article  Google Scholar 

  • Witmer, K., Schmid, C. D., Brancucci, N. M., Luah, Y. H., Preiser, P. R., Bozdech, Z., et al. (2012). Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling. Molecular Microbiology, 84, 243–259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young, B. S., Pession, A., Traverse, K. L., French, C., & Pardue, M. L. (1983). Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell, 34, 85–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Louis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Louis, E.J. (2014). Introduction. In: Louis, E., Becker, M. (eds) Subtelomeres. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41566-1_1

Download citation

Publish with us

Policies and ethics