Skip to main content

On the Communication Complexity of Distributed Name-Independent Routing Schemes

  • Conference paper
Distributed Computing (DISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8205))

Included in the following conference series:

Abstract

We present a distributed asynchronous algorithm that, for every undirected weighted n-node graph G, constructs name-independent routing tables for G. The size of each table is \(\tilde{O}(\sqrt{n}\,)\), whereas the length of any route is stretched by a factor of at most 7 w.r.t. the shortest path. At any step, the memory space of each node is \(\tilde{O}(\sqrt{n}\,)\). The algorithm terminates in time O(D), where D is the hop-diameter of G. In synchronous scenarios and with uniform weights, it consumes \(\tilde{O}(m\sqrt{n} + n^{3/2}\) min\({D,\sqrt{n}\,})\) messages, where m is the number of edges of G.

In the realistic case of sparse networks of poly-logarithmic diameter, the communication complexity of our scheme, that is \(\tilde{O}(n^{3/2})\), improves by a factor of \(\sqrt{n}\) the communication complexity of any shortest-path routing scheme on the same family of networks. This factor is provable thanks to a new lower bound of independent interest.

All the authors are supported by the ANR-project DISPLEXITY (ANR-11-BS02-014), and the European STREP7-project EULER. The first author is also member of the “Institut Universitaire de France”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in networks with low doubling dimension. In: 26th International Conference on Distributed Computing Systems (ICDCS). IEEE Computer Society Press (July 2006)

    Google Scholar 

  2. Abraham, I., Gavoille, C., Malkhi, D.: On space-stretch trade-offs: Lower bounds. In: 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 217–224. ACM Press (July 2006)

    Google Scholar 

  3. Abraham, I., Gavoille, C., Malkhi, D.: On space-stretch trade-offs: Upper bounds. In: 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 207–216. ACM Press (July 2006)

    Google Scholar 

  4. Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact name-independent routing with minimum stretch. ACM Transactions on Algorithms 3, Article 37 (2008)

    Google Scholar 

  5. Abraham, I., Gavoille, C., Malkhi, D., Wieder, U.: Strong-diameter decompositions of minor free graphs. Theory of Computing Systems 47, 837–855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abraham, I., Malkhi, D.: Name independent routing for growth bounded networks. In: 17th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 49–55. ACM Press (July 2005)

    Google Scholar 

  7. Afek, Y., Ricklin, M.: Sparser: A paradigm for running distributed algorithms. Journal of Algorithms 14, 316–328 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arias, M., Cowen, L.J., Laing, K.A., Rajaraman, R., Taka, O.: Compact routing with name independence. SIAM Journal on Discrete Mathematics 20, 705–726 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Awerbuch, B.: Complexity of network synchronization. Journal of the ACM 32, 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Awerbuch, B., Bar-Noy, A., Gopal, M.: Approximate distributed Bellman-Ford algorithms. IEEE Transactions on Communications 42, 2515–2519 (1994)

    Article  Google Scholar 

  11. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with succinct tables. Journal of Algorithms 11, 307–341 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Information and Computation 106, 234–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertsekas, D.P., Gallager, R.G.: Data Networks, 2nd edn. Routing in Data Networks, ch. 5. Prentice Hall (1992)

    Google Scholar 

  14. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms 1, 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  15. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε,β)-spanners in the distributed and streaming models. Distributed Computing 18, 375–385 (2006)

    Article  MATH  Google Scholar 

  16. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Haldar, S.: An ’all pairs shortest paths’ distributed algorithm using 2n 2 messages. Journal of Algorithms 24, 20–36 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Information and Computation 131, 63–79 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleinrock, L., Kamoun, F.: Hierarchical routing for large networks; performance evaluation and optimization. Computer Networks 1, 155–174 (1977)

    MathSciNet  Google Scholar 

  20. Konjevod, G., Richa, A.W., Xia, D.: Optimal-stretch name-independent compact routing in doubling metrics. In: 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 198–207. ACM Press (July 2006)

    Google Scholar 

  21. Laing, K.A.: Name-independent compact routing in trees. Information Processing Letters 103, 57–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications (2000)

    Google Scholar 

  23. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. ACM Transactions on Algorithms 3, Article 29 (2008)

    Google Scholar 

  24. Singla, A., Godfrey, P.B., Fall, K., Iannaccone, G., Ratnasamy, S.: Scalable routing on flat names. In: 6th International Conference on Emerging Networking EXperiments and Technologies (CoNEXT), Article No. 20. ACM Press (November 2010)

    Google Scholar 

  25. Tang, M., Zhang, G., Lin, T., Liu, J.: HDLBR: A name-independent compact routing scheme for power-law networks. Computer Communications 36, 351–359 (2013)

    Article  Google Scholar 

  26. Tsitsiklis, J.N., Stamoulis, G.D.: On the average communication complexity of asynchronous distributed algorithms. Journal of the ACM 42, 382–400 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavoille, C., Glacet, C., Hanusse, N., Ilcinkas, D. (2013). On the Communication Complexity of Distributed Name-Independent Routing Schemes. In: Afek, Y. (eds) Distributed Computing. DISC 2013. Lecture Notes in Computer Science, vol 8205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41527-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41527-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41526-5

  • Online ISBN: 978-3-642-41527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics