Skip to main content

Not Just Signal Shutoff: The Protective Role of Arrestin-1 in Rod Cells

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

The retinal rod cell is an exquisitely sensitive single-photon detector that primarily functions in dim light (e.g., moonlight). However, rod cells must routinely survive light intensities more than a billion times greater (e.g., bright daylight). One serious challenge to rod cell survival in daylight is the massive amount of all-trans-retinal that is released by Meta II, the light-activated form of the photoreceptor rhodopsin. All-trans-retinal is toxic, and its condensation products have been implicated in disease. Our recent work has developed the concept that rod arrestin (arrestin-1), which terminates Meta II signaling, has an additional role in protecting rod cells from the consequences of bright light by limiting free all-trans-retinal. In this chapter we will elaborate upon the molecular mechanisms by which arrestin-1 serves as both a single-photon response quencher as well as an instrument of rod cell survival in bright light. This discussion will take place within the framework of three distinct functional modules of vision: signal transduction, the retinoid cycle, and protein translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The difference might be strain-related (Lamb and Pugh 2004), as the first study utilized one inbred albino strain and the second various pigmented strains.

  2. 2.

    Based on the measured off-rate of ~0.01 s−1 for the arrestin-bound Meta II-P complex at physiological temperatures (Sommer et al. 2005).

References

  • Alpern M (1971) Rhodopsin kinetics in the human eye. J Physiol 217:447–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287:1620–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blakeley LR, Chen C, Chen CK, Chen J, Crouch RK, Travis GH, Koutalos Y (2011) Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci 52:3483–3491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burns ME, Mendez A, Chen CK, Almuete A, Quillinan N, Simon MI, Baylor DA, Chen J (2006) Deactivation of phosphorylated and nonphosphorylated rhodopsin by arrestin splice variants. J Neurosci 26:1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Chaum E, Yin J, Yang H, Thomas F, Lang JC (2009) Quantitative AP-1 gene regulation by oxidative stress in the human retinal pigment epithelium. J Cell Biochem 108:1280–1291

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Simon MI, Matthes MT, Yasumura D, LaVail MM (1999) Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Invest Ophthalmol Vis Sci 40:2978–2982

    CAS  PubMed  Google Scholar 

  • Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K (2012) Mechanism of all-trans-retinal toxicity: implications for Stargardt’s disease and age-related macular degeneration. J Biol Chem 287:5059–5069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cleghorn WM, Tsakem EL, Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Progressive reduction of its expression in rods reveals two pools of arrestin-1 in the outer segment with different roles in photoresponse recovery. PLoS One 6:e22797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elias RV, Sezate SS, Cao W, McGinnis JF (2004) Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells. Mol Vis 10:672–681

    CAS  PubMed  Google Scholar 

  • Fain GL (2006) Why photoreceptors die (and why they don’t). Bioessays 28:344–354

    Article  CAS  PubMed  Google Scholar 

  • Gibson SK, Parkes JH, Liebman PA (2000) Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin. Biochemistry 39:5738–5749

    Article  CAS  PubMed  Google Scholar 

  • Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV (2011) The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 30:405–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–4905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007a) Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci USA 104:3125–3128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007b) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI, Grimm C, Reme CE, Lem J (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet 32:254–260

    Article  CAS  PubMed  Google Scholar 

  • Harper WS, Gaillard ER (2001) Studies of all-trans-retinal as a photooxidizing agent. Photochem Photobiol 73:71–76

    Article  CAS  PubMed  Google Scholar 

  • Heck M, Hofmann KP (2001) Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J Biol Chem 276:10000–10009

    Article  CAS  PubMed  Google Scholar 

  • Heck M, Schädel SA, Maretzki D, Bartl FJ, Ritter E, Palczewski K, Hofmann KP (2003a) Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II. J Biol Chem 278:3162–3169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heck M, Schädel SA, Maretzki D, Hofmann KP (2003b) Secondary binding sites of retinoids in opsin: characterization and role in regeneration. Vision Res 43:3003–3010

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  CAS  PubMed  Google Scholar 

  • Hofmann KP, Pulvermüller A, Buczylko J, Van Hooser P, Palczewski K (1992) The role of arrestin and retinoids in the regeneration pathway of rhodopsin. J Biol Chem 267:15701–15706

    CAS  PubMed  Google Scholar 

  • Hofmann KP, Spahn CM, Heinrich R, Heinemann U (2006) Building functional modules from molecular interactions. Trends Biochem Sci 31:497–508

    Article  CAS  PubMed  Google Scholar 

  • Hofmann KP, Scheerer P, Hildebrand PW, Choe HW, Park JH, Heck M, Ernst OP (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552

    Article  CAS  PubMed  Google Scholar 

  • Kaiser PK, Boynton RM (1996) Human color vision. Optical Society of America, Washington, DC

    Google Scholar 

  • Kalariya NM, Ramana KV, Srivastava SK, van Kuijk FJ (2008) Carotenoid derived aldehydes-induced oxidative stress causes apoptotic cell death in human retinal pigment epithelial cells. Exp Eye Res 86:70–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy MJ, Lee KA, Niemi GA, Craven KB, Garwin GG, Saari JC, Hurley JB (2001) Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation. Neuron 31:87–101

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci USA 109:18407–18412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146

    Article  CAS  PubMed  Google Scholar 

  • Lamb TD (2009) Evolution of vertebrate retinal photoreception. Philos Trans R Soc Lond B Biol Sci 364:2911–2924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb TD, Pugh EN Jr (2004) Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res 23:307–380

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Nawrot M, Garwin GG, Saari JC, Hurley JB (2010) Relationships among visual cycle retinoids, rhodopsin phosphorylation, and phototransduction in mouse eyes during light and dark adaptation. Biochemistry 49:2454–2463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda A, Maeda T, Golczak M, Chou S, Desai A, Hoppel CL, Matsuyama S, Palczewski K (2009) Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J Biol Chem 284:15173–15183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda A, Golczak M, Chen Y, Okano K, Kohno H, Shiose S, Ishikawa K, Harte W, Palczewska G, Maeda T, Palczewski K (2011) Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat Chem Biol 8:170–178

    Article  PubMed Central  PubMed  Google Scholar 

  • Matthews RG, Hubbard R, Brown PK, Wald G (1963) Tautomeric forms of metarhodopsin. J Gen Physiol 47:215–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McBee JK, Palczewski K, Baehr W, Pepperberg DR (2001) Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 20:469–529

    Article  CAS  PubMed  Google Scholar 

  • Mendez A, Burns ME, Roca A, Lem J, Wu LW, Simon MI, Baylor DA, Chen J (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28:153–164

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima KJ, Cornwall MC, Sampath AP (2009) Metabolic constraints on the recovery of sensitivity after visual pigment bleaching in retinal rods. J Gen Physiol 134:165–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nair KS, Hanson SM, Kennedy MJ, Hurley JB, Gurevich VV, Slepak VZ (2004) Direct binding of visual arrestin to microtubules determines the differential subcellular localization of its splice variants in rod photoreceptors. J Biol Chem 279:41240–41248

    Article  CAS  PubMed  Google Scholar 

  • Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Najafi M, Maza NA, Calvert PD (2012) Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc Natl Acad Sci USA 109:203–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nickell S, Park PS, Baumeister W, Palczewski K (2007) Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177:917–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orisme W, Li J, Goldmann T, Bolch S, Wolfrum U, Smith WC (2010) Light-dependent translocation of arrestin in rod photoreceptors is signaled through a phospholipase C cascade and requires ATP. Cell Signal 22:447–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palczewski K, Jäger S, Buczylko J, Crouch RK, Bredberg DL, Hofmann KP, Asson-Batres MA, Saari JC (1994) Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry 33:13741–13750

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K, Van Hooser JP, Garwin GG, Chen J, Liou GI, Saari JC (1999) Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin. Biochemistry 38:12012–12019

    Article  CAS  PubMed  Google Scholar 

  • Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol 90:1060–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rattner A, Smallwood PM, Nathans J (2000) Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem 275:11034–11043

    Article  CAS  PubMed  Google Scholar 

  • Reme CE (2005) The dark side of light: rhodopsin and the silent death of vision the proctor lecture. Invest Ophthalmol Vis Sci 46:2671–2682

    Article  PubMed  Google Scholar 

  • Ritter E, Elgeti M, Bartl FJ (2008) Activity switches of rhodopsin. Photochem Photobiol 84:911–920

    Article  CAS  PubMed  Google Scholar 

  • Rozanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81:1305–1330

    Article  CAS  PubMed  Google Scholar 

  • Rushton WA, Powell DS (1972) The rhodopsin content and the visual threshold of human rods. Vision Res 12:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Saari JC (2000) Biochemistry of visual pigment regeneration: the Friedenwald lecture. Invest Ophthalmol Vis Sci 41:337–348

    CAS  PubMed  Google Scholar 

  • Saari JC, Garwin GG, Van Hooser JP, Palczewski K (1998) Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vision Res 38:1325–1333

    Article  CAS  PubMed  Google Scholar 

  • Satoh AK, Xia H, Yan L, Liu CH, Hardie RC, Ready DF (2010) Arrestin translocation is stoichiometric to rhodopsin isomerization and accelerated by phototransduction in Drosophila photoreceptors. Neuron 67:997–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schädel SA, Heck M, Maretzki D, Filipek S, Teller DC, Palczewski K, Hofmann KP (2003) Ligand channeling within a G-protein-coupled receptor. The entry and exit of retinals in native opsin. J Biol Chem 278:24896–24903

    Article  PubMed Central  PubMed  Google Scholar 

  • Schleicher A, Kühn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–1775

    Article  CAS  PubMed  Google Scholar 

  • Schröder K, Pulvermüller A, Hofmann KP (2002) Arrestin and its splice variant Arr1-370A (p44). Mechanism and biological role of their interaction with rhodopsin. J Biol Chem 277:43987–43996

    Article  PubMed  Google Scholar 

  • Schubert C, Hirsch JA, Gurevich VV, Engelman DM, Sigler PB, Fleming KG (1999) Visual arrestin activity may be regulated by self-association. J Biol Chem 274:21186–21190

    Article  CAS  PubMed  Google Scholar 

  • Shi GW, Chen J, Concepcion F, Motamedchaboki K, Marjoram P, Langen R (2005) Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells. J Biol Chem 280:41184–41191

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slepak VZ, Hurley JB (2008) Mechanism of light-induced translocation of arrestin and transducin in photoreceptors: interaction-restricted diffusion. IUBMB Life 60:2–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer ME, Smith WC, Farrens DL (2005) Dynamics of arrestin-rhodopsin interactions: arrestin and retinal release are directly linked events. J Biol Chem 280:6861–6871

    Article  CAS  PubMed  Google Scholar 

  • Sommer ME, Farrens DL, McDowell JH, Weber LA, Smith WC (2007) Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. J Biol Chem 282:25560–25568

    Article  CAS  PubMed  Google Scholar 

  • Sommer ME, Hofmann KP, Heck M (2011) Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 286:7359–7369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer ME, Hofmann KP, Heck M (2012) Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nat Commun 3:995

    Article  PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Arrestin-1 expression level in rods: balancing functional performance and photoreceptor health. Neuroscience 174:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparrow JR, Wu Y, Kim CY, Zhou J (2010) Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 51:247–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY (2006) Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci 26:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, Sinha A, DeWitt M, Farrens DL (2010) Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J Mol Biol 399:501–511

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez MG, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV (2007) Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem 282:32075–32083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288(17):11741–11750

    Article  CAS  PubMed  Google Scholar 

  • Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  PubMed  Google Scholar 

  • Wenzel A, Oberhauser V, Pugh EN Jr, Lamb TD, Grimm C, Samardzija M, Fahl E, Seeliger MW, Reme CE, von Lintig J (2005) The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light. J Biol Chem 280:29874–29884

    Article  CAS  PubMed  Google Scholar 

  • Wielgus AR, Chignell CF, Ceger P, Roberts JE (2010) Comparison of A2E cytotoxicity and phototoxicity with all-trans-retinal in human retinal pigment epithelial cells. Photochem Photobiol 86:781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilden U, Kuhn H (1982) Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry 21:3014–3022

    Article  CAS  PubMed  Google Scholar 

  • Wilden U, Hall SW, Kuhn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci USA 83:1174–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505–509

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha E. Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, M.E., Hofmann, K.P., Heck, M. (2014). Not Just Signal Shutoff: The Protective Role of Arrestin-1 in Rod Cells. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_5

Download citation

Publish with us

Policies and ethics