Skip to main content

Arrestin-Mediated Activation of p38 MAPK: Molecular Mechanisms and Behavioral Consequences

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

Studies of kappa opioid receptor signaling mechanisms during the last decade have demonstrated that agonist activation of the receptor results in Gβγ-dependent signaling and distinct arrestin-dependent signaling events. Gβγ-dependent signaling results in ion channel regulation causing neuronal inhibition, inhibition of transmitter release, and subsequent analgesic responses. In contrast, arrestin-dependent signaling events result in p38 MAPK activation and subsequent dysphoric and proaddictive behavioral responses. Resolution of these two branches of signaling cascades has enabled strategies designed to identify pathway-selective drugs that may have unique therapeutic utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASK1:

Apoptosis signal-regulating kinase 1

β2AR:

β2-Adrenergic receptor

CRF:

Corticotropin-releasing factor

JNK:

c-Jun N-terminal Kinase

ERK1/2:

Extracellular signal-regulated kinase

GRK:

G-protein receptor kinase

GPCRs:

G-protein-coupled receptors

GIRK, Kir3:

G-protein-gated inwardly rectifying potassium channel

GFAP:

Glial fibrillary acidic protein

KOR:

Kappa opioid receptor

rKOR:

Rodent KOR

hKOR:

Human KOR

MAPK:

Mitogen-activated protein kinase

MAP3K5:

Mitogen-activated protein kinase kinase kinase 5

PKC:

Protein kinase C

5HT:

Serotonin, 5-hydroxytryptamine

References

  • Akil H, Meng F, Mansour A, Thompson R, Xie GX, Watson S (1996) Cloning and characterization of multiple opioid receptors. NIDA Res Monogr 161:127–40

    CAS  PubMed  Google Scholar 

  • Appleyard SM, Celver J, Pineda V, Kovoor A, Wayman GA, Chavkin C (1999) Agonist-dependent desensitization of the kappa opioid receptor by G protein receptor kinase and β-arrestin. J Biol Chem 274:23802–23807

    Article  CAS  PubMed  Google Scholar 

  • Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–19664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl) 210:137–147

    Article  CAS  Google Scholar 

  • Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–18089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruchas MR, Land BB, Aita M, Xu M, Barot SK, Li S, Chavkin C (2007a) Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria. J Neurosci 27:11614–11623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruchas MR, Yang T, Schreiber S, Defino M, Kwan SC, Li S, Chavkin C (2007b) Long-acting kappa opioid antagonists disrupt receptor signaling and produce noncompetitive effects by activating c-Jun N-terminal kinase. J Biol Chem 282:29803–29811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruchas MR, Xu M, Chavkin C (2008) Repeated swim-stress induces kappa opioid-mediated activation of ERK1/2 MAPK. Neuroreport 19(14):1417–1422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruchas MR, Land BB, Lemos JC, Chavkin C (2009) CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4(12):e8528

    Article  PubMed Central  PubMed  Google Scholar 

  • Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M, Land BB, Lemos JC, Hagen C, Neumaier JN, Quintana A, Palmiter RD, Chavkin C (2011) Selective p38alpha MAPK deletion in serotonergic neurons produces stress-resilience in models of depression and addiction. Neuron 71:498–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burack WR, Shaw AS (2000) Signal transduction. Hanging on a scaffold. Curr Opin Cell Biol 12:211–216

    Article  CAS  PubMed  Google Scholar 

  • Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215:413–415

    Article  CAS  PubMed  Google Scholar 

  • Chavkin C (2011) The therapeutic potential of kappa opioids for treatment of pain and addiction. Neuropsychopharmacology 36:369–370

    Article  PubMed Central  PubMed  Google Scholar 

  • Cherubini E, North RA (1985) Mu and kappa opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci USA 82:1860–1863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton CC, Xu M, Chavkin C (2009) Tyrosine phosphorylation of Kir3 following kappa opioid receptor activation of p38-MAPK causes heterologous desensitization. J Biol Chem 284:31872–31881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91

    Article  CAS  PubMed  Google Scholar 

  • Dang VC, Christie MJ (2012) Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. Br J Pharmacol 165:1704–1716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Flannery P, Yuan L, Corsino L, Spurney R, Lefkowitz RJ, Luttrell LM (2009) A beta- arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med 1:1ra1

    PubMed Central  PubMed  Google Scholar 

  • Grudt TJ, Williams JT (1995) Opioid receptors and the regulation of ion conductances. Rev Neurosci 6:279–286

    CAS  PubMed  Google Scholar 

  • Hahn JW, Jagwani S, Kim E, Rendell VR, He J, Ezerskiy LA, Wesselschmidt R, Coscia CJ, Belcheva MM (2010) Mu and kappa opioids modulate mouse embryonic stem cell-derived neural progenitor differentiation via MAP kinases. J Neurochem 112:1431–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262

    Article  CAS  PubMed  Google Scholar 

  • Ippolito DL, Temkin PA, Rogalski SL, Chavkin C (2002) N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Galphai. J Biol Chem 277:32692–32696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ippolito DL, Xu M, Bruchas MR, Wickman K, Chavkin C (2005) Tyrosine phosphorylation of K(ir)3.1 in spinal cord is induced by acute inflammation, chronic neuropathic pain, and behavioral stress. J Biol Chem 280:41683–41693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemos JC, Roth CA, Messinger DI, Gill HK, Phillips PEM, Chavkin C (2012) Repeated stress exposure dysregulates kappa opioid receptor signaling in the dorsal raphe through a p38α MAPK dependent mechanism. J Neurosci 32:12325–12336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Li JG, Chen C, Zhang F, Liu-Chen LY (2002) Molecular basis of differences in (-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide-induced desensitization and phosphorylation between human and rat kappa-opioid receptors expressed in Chinese hamster ovary cells. Mol Pharmacol 61:73–84

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    Article  CAS  PubMed  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JP, Xu M, Mackie K, Chavkin C (2003) Phosphorylation of a carboxy-terminal serine within the kappa opioid receptor produces desensitization and internalization. J Biol Chem 278:34631–34640

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JP, Land BB, Li S, Pintar JE, Chavkin C (2006) Prior activation of kappa opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology 31:787–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLennan GP, Kiss A, Miyatake M, Belcheva MM, Chambers KT, Pozek JJ, Mohabbat Y, Moyer RA, Bohn LM, Coscia CJ (2008) Kappa opioids promote the proliferation of astrocytes via Gbetagamma and beta-arrestin 2-dependent MAPK-mediated pathways. J Neurochem 107:1753–1765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melief EJ, Miyatake M, Bruchas MR, Chavkin C (2010) Ligand-directed Jun kinase activation disrupts opioid receptor signaling. Proc Natl Acad Sci USA 107:11608–11613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller WE, Houtz DA, Nelson CD, Kolattukudy PE, Lefkowitz RJ (2003) G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J Biol Chem 278:21663–21671

    Article  CAS  PubMed  Google Scholar 

  • Morris GE, Nelson CP, Brighton PJ, Standen NB, Challiss RA, Willets JM (2012) Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle. Am J Physiol Cell Physiol 302:C723–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways. Regulation and physiological functions. Endocr Rev 22:153–183

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776

    Article  CAS  PubMed  Google Scholar 

  • Rives ML, Rossillo M, Liu-Chen LY, Javitch JA (2012) 6'-Guanidinonaltrindole (6'-GNTI) is a G protein-biased κ-opioid receptor agonist that inhibits arrestin recruitment. J Biol Chem 287:27050–27054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S (2005) A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci 25:29–41

    Article  CAS  PubMed  Google Scholar 

  • Schattauer SS, Miyatake M, Shankar H, Zietz C, Levin JR, Liu-Chen LY, Gurevich VV, Rieder MJ, Chavkin C (2012) Ligand directed signaling differences between rodent and human kappa opioid receptors. J Biol Chem 287:41595–41607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schindler AG, Messinger DI, Smith JS, Shankar H, Gustin RM, Schattauer SS, Lemos JC, Chavkin NW, Hagan CE, Neumaier JN, Chavkin C (2012) Stress produces aversion and potentiates cocaine reward by releasing endogenous dynorphins in the ventral striatum to locally stimulate serotonin reuptake. J Neurosci 32:17582–17596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shippenberg TS, Herz A (1986) Differential effects of mu and kappa opioid systems on motivational processes. NIDA Res Monogr 75:563–66

    CAS  PubMed  Google Scholar 

  • Simmons ML, Chavkin C (1996) Endogenous opioid regulation of hippocampal function. Int Rev Neurobiol 39:145–196

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng Z, Ma L, Pei G (2002) Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277:49212–49219

    Article  CAS  PubMed  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  CAS  PubMed  Google Scholar 

  • Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, Whalen EJ, Gowen M, Lark MW (2010) Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335:572–579

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gardell LR, Ossipov MH, Vanderah TW, Brennan MB, Hochgeschwender U, Hruby VJ, Malan TP Jr, Lai J, Porreca F (2001) Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J Neurosci 21:1779–1786

    CAS  PubMed  Google Scholar 

  • Werz MA, Macdonald RL (1984) Dynorphin reduces voltage-dependent calcium conductance of mouse dorsal root ganglion neurons. Neuropeptides 5:253–256

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Petraschka M, McLaughlin JP, Westenbroek R, Caron MG, Lefkowitz RJ, Czyzyk TA, Pintar JE, Chavkin C (2004) Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neurosci 24:4576–4584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu M, Bruchas MR, Ippolito DL, Gendron L, Chavkin C (2007) Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 Mitogen-Activated Protein Kinase. J Neurosci 27:2570–2581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang X, Zhou G, Ren T, Li H, Zhang Y, Yin D, Qian H, Li Q (2012) β-Arrestin prevents cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt pathways. Apoptosis 17:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD (2004) Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol 65:1462–1474

    Article  CAS  PubMed  Google Scholar 

  • Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD (2005) p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J Biol Chem 280:15649–15658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to our coauthors on the research papers from our lab cited in this review for their creativity and hard work. The studies cited were largely supported by research grants from the National Institute on Drug Abuse, currently R37DA11672, RO1DA030074, T32DA07278, and KO5DA020570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Chavkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chavkin, C., Schattauer, S.S., Levin, J.R. (2014). Arrestin-Mediated Activation of p38 MAPK: Molecular Mechanisms and Behavioral Consequences. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_14

Download citation

Publish with us

Policies and ethics