Skip to main content

Proton exchange reactions of C2–C4 alkanes sorbed in ZSM-5 zeolite

  • Regular Article
  • Chapter
  • First Online:
Marco Antonio Chaer Nascimento

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 4))

  • 513 Accesses

Abstract

An extensive theoretical study has been carried out to determine barriers for the proton exchange reactions of C2–C4 alkanes in ZSM-5. It was found that cluster size and cavity structure are very important for predicting this barrier. A decrement of up to 20 kcal/mol was observed when employing the periodic model instead of using the small cluster model. Effects of basis set quality and electron correlation to the activation energy are positive and in combination could contribute up to 8 kcal/mol. An extrapolation scheme for estimating the reaction barrier that takes into account effects of cluster size, basis set quality, and electron correlation has been proposed. The regioselectivity and the chain length were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vermeiren W, Gilson JP (2009) Impact of zeolites on the petroleum and petrochemical industry. Top Catal 52(9):1131– 1161

    Article  CAS  Google Scholar 

  2. The intelligence report: business shift in the global catalytic process industries 2005–2011. The Catalyst Group Resources, Inc, May 2006

    Google Scholar 

  3. World catalysts. The Freedonia Group, Inc, Jan 2007

    Google Scholar 

  4. Narbeshuber TF, Vinek H, Lercher JA (1995) Monomolecular conversion of light alkanes over H-ZSM-5. J Catal 157(2): 388–395

    Article  CAS  Google Scholar 

  5. Lercher JA, Santen RA, Vinek H (1994) Carbonium ion formation in zeolite catalysis. Catal Lett 27(1):91–96

    Article  CAS  Google Scholar 

  6. Stepanov A, Ernst H, Freude D (1998) In situ 1H MAS NMR studies of the H/D exchange of deuterated propane adsorbed on zeolite H-ZSM-5. Catal Lett 54(1):1–4

    Article  CAS  Google Scholar 

  7. Arzumanov SS, Reshetnikov SI, Stepanov AG, Parmon VN, Freude D (2005) In Situ 1H and 13C MAS NMR kinetic study of the mechanism of H/D exchange for propane on zeolite H-ZSM-5. J Phys Chem B 109(42):19748–19757. doi:10.1021/jp054037n

    Article  CAS  Google Scholar 

  8. Narbeshuber TF, Stockenhuber M, Brait A, Seshan K, Lercher JA (1996) Hydrogen/deuterium exchange during n-butane conversion on H-ZSM-5. J Catal 160(2):183–189

    Article  CAS  Google Scholar 

  9. Arzumanov SS, Stepanov AG, Freude D (2008) Kinetics of H/D exchange for n-butane on zeolite H-ZSM-5 studied with 1H MAS NMR in situ. J Phys Chem C 112(31):11869–11874. doi:10.1021/ jp802162h

    Article  CAS  Google Scholar 

  10. Zheng A, Deng F, Liu S-B (2011) Regioselectivity of carbonium ion transition states in zeolites. Catal Today 164(1):40–45

    Article  CAS  Google Scholar 

  11. Kramer GJ, van Santen RA, Emeis CA, Nowak AK (1993) Understanding the acid behaviour of zeolites from theory and experiment. Nature 363(6429):529–531

    Article  CAS  Google Scholar 

  12. Sommer J, Habermacher D, Jost R, Sassi A, Stepanov AG, Luzgin MV, Freude D, Ernst H, Martens J (1999) Activation of small alkanes on solid acids. An H/D exchange study by liquid and solid-state NMR: the activation energy and the inhibiting effect of carbon monoxide. J Catal 181(2):265–270

    CAS  Google Scholar 

  13. Stepanov AG, Arzumanov SS, Luzgin MV, Ernst H, Freude D, Parmon VN (2005) In situ 1H and 13C MAS NMR study of the mechanism of H/D exchange for deuterated propane adsorbed on H-ZSM-5. J Catal 235(1):221–228

    Article  CAS  Google Scholar 

  14. Zimmerman PM, Head-Gordon M, Bell AT (2011) Selection and validation of charge and Lennard-Jones parameters for QM/MM simulations of hydrocarbon interactions with zeolites. J Chem Theory Comput 7(6):1695–1703. doi:10.1021/ct2001655

    Article  CAS  Google Scholar 

  15. Esteves PM, Nascimento MAC, Mota CJA (1999) Reactivity of alkanes on zeolites: a theoretical ab initio study of the H/H exchange. J Phys Chem B 103(47):10417–10420. doi:10.1021/ jp990555k

    Article  CAS  Google Scholar 

  16. Blaszkowski SR, Nascimento MAC, van Santen RA (1996) Activation of C–H and C–C bonds by an acidic zeolite: a density functional study. J Phys Chem 100(9):3463–3472. doi:10.1021/ jp9523231

    Article  CAS  Google Scholar 

  17. Zheng X, Blowers P (2005) A computational study of alkane hydrogen-exchange reactions on zeolites. J Mol Catal A: Chem 242(1–2):18–25

    Article  CAS  Google Scholar 

  18. Zheng X, Blowers P (2006) Reactivity of isobutane on zeolites: a first principles study. J Phys Chem A 110(7):2455–2460. doi: 10.1021/jp056707v

    Article  CAS  Google Scholar 

  19. Tuma C, Sauer J (2006) Treating dispersion effects in extended systems by hybrid MP2: DFT calculations–protonation of isobutene in zeolite ferrierite. Phys Chem Chem Phys 8(34):3955– 3965

    Article  CAS  Google Scholar 

  20. Bučko T, Benco L, Hafner J, Ángyán JG (2007) Proton exchange of small hydrocarbons over acidic chabazite: Ab initio study of entropic effects. J Catal 250(1):171–183

    Article  Google Scholar 

  21. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764

    Article  CAS  Google Scholar 

  22. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162(3):165–169

    Article  CAS  Google Scholar 

  23. Truhlar DG (1998) Basis-set extrapolation. Chem Phys Lett 294 (1–3):45–48

    Article  CAS  Google Scholar 

  24. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  26. Schafer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97(4):2571–2577

    Article  Google Scholar 

  27. Schafer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Article  Google Scholar 

  28. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc 97(1): 119–124

    Article  CAS  Google Scholar 

  29. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517

    Article  CAS  Google Scholar 

  30. Delley B (1991) Analytic energy derivatives in the numerical local-density-functional approach. J Chem Phys 94(11):7245–7250

    Article  CAS  Google Scholar 

  31. Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Phys Chem 100(15):6107–6110. doi:10.1021/ jp952713n

    Article  CAS  Google Scholar 

  32. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106(23):9639–9646

    Article  CAS  Google Scholar 

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  34. Kerber T, Sierka M, Sauer J (2008) Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory. J Comput Chem 29(13):2088–2097. doi:10. 1002/jcc.21069

    Google Scholar 

  35. De Moor BA, M-F Reyniers, Gobin OC, Lercher JA, Marin GB (2010) Adsorption of C2–C8 n-alkanes in zeolites. J Phys Chem C 115(4):1204–1219. doi:10.1021/jp106536m

    Article  Google Scholar 

  36. Hampson JA, Rees LVC (1993) Adsorption of ethane and propane in silicalite-1 and zeolite NaY: determination of single components, mixture and partial adsorption data using an isosteric system. J Chem Soc, Faraday Trans 89:3169–3176

    Article  CAS  Google Scholar 

  37. Stach H, Fiedler K, Janchen J (1993) Correlation between initial heats of adsorption and structural parameters of molecular sieves with different chemical composition—a calorimetric study. Pure Appl Chem 65(10):2193–2200

    Article  CAS  Google Scholar 

  38. Anderson BG, Schumacher RR, van Duren R, Singh AP, van Santen RA (2002) An attempt to predict the optimum zeolitebased catalyst for selective cracking of naphtha-range hydrocarbons to light olefins. J Mol Catal A: Chem 181(1–2):291–301

    Article  CAS  Google Scholar 

  39. Eder F, Stockenhuber M, Lercher JA (1997) Bronsted acid site and pore controlled siting of alkane sorption in acidic molecular sieves. J Phys Chem B 101(27):5414–5419. doi:10.1021/jp97 06487

    Article  CAS  Google Scholar 

  40. Yanping S, Brown TC (2000) Kinetics of isobutane dehydrogenation and cracking over HZSM-5 at low pressures. J Catal 194(2):301–308

    Article  CAS  Google Scholar 

  41. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. J Am Chem Soc 131(2):816–825. doi:10.1021/ja807695p

    Article  CAS  Google Scholar 

  42. Eder F, Lercher JA (1997) Alkane sorption in molecular sieves: the contribution of ordering, intermolecular interactions, and sorption on Bronsted acid sites. Zeolites 18(1):75–81

    Article  CAS  Google Scholar 

  43. Eder F, Lercher JA (1997) On the role of the pore size and tortuosity for sorption of alkanes in molecular sieves. J Phys Chem B 101(8):1273–1278. doi:10.1021/jp961816i

    Article  CAS  Google Scholar 

  44. Jensen F (2006) Introduction to computational chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  45. Truitt MJ, Toporek SS, Rovira-Truitt R, White JL (2006) Alkane C–H bond activation in zeolites: evidence for direct protium exchange. J Am Chem Soc 128(6):1847–1852. doi:10.1021/ ja0558802

    Article  CAS  Google Scholar 

  46. Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study. J Am Chem Soc 132(33):11525–11538. doi:10.1021/ja102261m

    Article  CAS  Google Scholar 

  47. Tuma C, Kerber T, Sauer J (2010) The tert-butyl cation in H-zeolites: deprotonation to isobutene and conversion into surface alkoxides. Angew Chem Int Ed 49(27):4678–4680. doi: 10.1002/anie.200907015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lischka .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sukrat, K., Tunega, D., Aquino, A.J.A., Lischka, H., Parasuk, V. (2014). Proton exchange reactions of C2–C4 alkanes sorbed in ZSM-5 zeolite. In: Ornellas, F., João Ramos, M. (eds) Marco Antonio Chaer Nascimento. Highlights in Theoretical Chemistry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41163-2_4

Download citation

Publish with us

Policies and ethics