Skip to main content

Payload Design and Sizing

  • Chapter
  • First Online:
The International Handbook of Space Technology

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

The vast array of engineering, technology, manpower, and money required to prepare for and execute a spacecraft launch is focused on a single purpose, namely to put an operational payload in space. Often, the payload is simply regarded as the package to be delivered but the nature of this package, in particular its operational requirements, tend to drive the mission constraints as a whole—launch system, spacecraft, telecommunications, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    At the present time the orbital information for objects greater than 10 cm is publicly available. However, it is widely known that smaller objects are also being monitored but this information is classified and not in the public domain at the time of writing.

References

  1. NASA Procedural Requirements 8705.4, Risk Classification for NASA Payloads, NODIS Library, 2004.

    Google Scholar 

  2. Design Methodologies for Space Transportation Systems, W. E. Hammond, AIAA Education Series, 2001.

    Google Scholar 

  3. Space Missions Analysis and Design, eds. W. J. Larson and J. R. Wertz, Space Technology Series, 1992, (Kluwer, Dordrecht)

    Google Scholar 

  4. The Hubble Space Telescope mission, history, and systems, L. L. Endelman, in International Congress on High-Speed Photography and Photonics, 19th, Cambridge, England, Sept. 16-21, 1990, Proceedings (A92-45101 19-35). Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1991, p. 422-441.

    Google Scholar 

  5. NASA Solar Dynamics Observatory Mission website: http://www.nasa.gov/mission_pages/sdo/spacecraft/

  6. The Interstellar Boundary Explorer (IBEX): Tracing the Interaction Between the Heliosphere and Surrounding Interstellar Material with Energetic Neutral Atoms, P. C. Frisch and D. J. McComas, 2010, Space Science Reviews, DOI: 10.1007/s11214-010-9725-0.

  7. The Microwave Anisotropy Probe (MAP) Mission, C.L. Bennett, et al., 2003, ApJ, 583, 1.

    Google Scholar 

  8. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results, Russell, J. et al., 2009, J. Atmos. Solar-Terrestrial Phys., 71, 289.

    Google Scholar 

  9. Voyager: The Grand Tour of Big Science, Butrica, A. J., 1998, from Engineering Science to Big Science: The NACA and NASA Collier Trophy Research Project Winners, 251.

    Google Scholar 

  10. The THEMIS Mission, V, Angelopoulos, 2008, Space Science Reviews, 141, 5.

    Google Scholar 

  11. The ULYSSES scientific payload, Caseley, P. J. and Marsden, R. G., 1990, ESA Bulletin (ISSN 0376-4265), no. 63, 29.

    Google Scholar 

  12. The Cluster Mission: ESA`S Spacefleet to the Magnetosphere, Credland, J., Mecke, G., and Ellwood, J., 1997, Space Science Reviews, 79, 33.

    Google Scholar 

  13. Apollo 11 Mission Report, Mission Evaluation Team, NASA Manned Spacecraft Center, 1971, NASA SP-238, NASA, Washington DC.

    Google Scholar 

  14. The Genesis Mission, ed. Russell, C. T., 2003, Space Science Reviews, 105, Nos. 3-4. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  15. Stardust: Comet and interstellar dust sample return mission, Brownlee, D. E. et al., 2003, Journal of Geophysical Research, 108, SRD 1-1, DOI 10.1029/2003JE002087.

  16. Sample Return Mission to NEA: MUSES-C, Fujiwara, A., Mukai, T., Kawaguchi, J., and Uesugi, K. T., 2000, Advances in Space Research, 25, 231.

    Google Scholar 

  17. Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science, Vondrak, R., Keller, J., Chin, G., Garvin, J., Space Science Reviews, 150, 7.

    Google Scholar 

  18. Spacecraft exploration of Mars, Snyder, C. W., and V. I. Moroz, in Mars, Kieffer ed, U. of Arizona Press, 1992.

    Google Scholar 

  19. The Cassini/Huygens Mission to Saturn, Mitchell, R., 2000, Technical Report, Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA 01/2000.

    Google Scholar 

  20. The Galileo Mission, Russell, C. T., 1992, Space Science Reviews, 60, 1.

    Google Scholar 

  21. Scientific Results of the Viking Project, Flin, E.A., 1977, Journal of Geophysical Research, 82, 3951.

    Google Scholar 

  22. Global Mobile Satellite Systems: A Systems Overview, eds. P. A. Swan and C. L. Devieux Jr., 2003, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  23. The Intelsat Global Satellite System, Alper, J. and Pelton, J.N., Progress in Astronautics and Aeronautics Series, 93. AIAA.

    Google Scholar 

  24. Spaceway-1 Datasheet from Boeing.

    Google Scholar 

  25. Anik F2 Datasheet from Boeing.

    Google Scholar 

  26. INMARSAT: Proceedings of the International Conference on Mobile Satellite Communciations, 1989, Blenheim Online Publications.

    Google Scholar 

  27. The global positioning system, Parkinson, S., 1996, American Institute of Aeronautics and Astronautics.

    Google Scholar 

  28. A Beginner’s Guide to GNSS in Europe, EVP Europe, 1999, International Federation of Air Traffic Controller’s Associations.

    Google Scholar 

  29. The SPOT satellite remote sensing mission, Chevrel, M., Courtois, M., Weill, G., 1981, Photogrammetric Engineering and Remote Sensing, 47, 1163.

    Google Scholar 

  30. Eye in the Sky: Story of the Corona Spy Satellites, eds. D.A. Day, J.M. Logsdon, and B. Latell, 1999, Smithsonian Books.

    Google Scholar 

  31. Wings in Orbit Scientific and Engineering Legacies of the Space Shuttle, 1971-2010, eds. W. Hale, H. Lane, G. Chapline, and K. Lulla, 2011, NASA Johnson Space Center.

    Google Scholar 

  32. Reference guide to the International Space Station. -- Assembly complete ed., 2010, NASA document: NP-2010-09-682-HQ.

    Google Scholar 

  33. Soyuz: A Universal Spacecraft, Hall, R. and Shayler, D., 2003, Springer-Praxis, New York.

    Google Scholar 

  34. The Advanced Composition Explorer, E.C. Stone, A.M. Frandsen, R.A. Mewaldt, E.R. Christian, D. Margolies, J.F. Ormes, F. Snow, 1998, Space Science Rev., 86, 1.

    Google Scholar 

  35. NASA GOES History website: http://goes.gsfc.nasa.gov/text/history/goes/goes.html.

  36. First Solar Power Sail Demonstration by IKAROS, Mori, O., et al., 2009, 27th International Symposium on Space Technology and Science, July 5-10 2009, Tsukuba. Japan.

    Google Scholar 

  37. Principal VASIMR Results and Present Objectives, Glover, T. W. et al., 2005, SPACE TECHNOLOGY AND APPLICATIONS INT.FORUM-STAIF 2005: 22nd Symp Space Nucl. Powr Propuls. AIP Conference Proceedings, 746, 976.

    Google Scholar 

  38. Deep Space One: NASA’s first Deep-Space technology validation mission, Rayman, M. D., and D. H. Lehman, 1997, Acta Astronautica, 41, 289.

    Google Scholar 

  39. Jupiter Icy Moons Orbiter (JIMO): An Element of the Prometheus Program, 2004, Technical Report, JPL Publication 04-16; 982-R06933

    Google Scholar 

  40. New Millennium Program Space Technology 7 website: http://nmp.jpl.nasa.gov/st7/

  41. New Millennium Program Space Technology 5 website: http://nmp.jpl.nasa.gov/st5/

  42. The CubeSat: The Picosatellite Standard for Research and Education, R. Nugent, R. Munakata, A. Chin, R. Coelho, Dr. Jordi Puig-Suari, 2008, AIAA Space 2008 Conference, San Diego California.

    Google Scholar 

  43. In-flight validation of the formation flying technologies using the ASPIICS/PROBA-3 giant coronagraph, Vivès, S.; Lamy, P.; Levacher, P.; Venet, M.; Boit, J. L., 2008, Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter. Edited by Oschmann, Jacobus M., Jr.; de Graauw, Mattheus W. M.; MacEwen, Howard A. Proceedings of the SPIE, 7010, 70103R.

    Google Scholar 

  44. Autonomous Formation Flying for the PRISMA Mission, Gill E., D’Amico S., Montenbruck O., 2007, AIAA Journal of Spacecraft and Rockets, 44, 671.

    Google Scholar 

  45. Commercial Space Transportation Study, 1997, Commercial Space Transportation Study Alliance, United States Aerospace Corporation, http://www.hq.nasa.gov/webaccess/CommSpaceTrans/.

  46. The SOHO Mission, Fleck B., Domingo, V. and A.I. Poland, Solar Phys., 162, 1.

    Google Scholar 

  47. Project Apollo: The Tough Decisions, Seamans, Robert C. Jr., 2005, Monograph in Aerospace History, No. 37, NASA SP-2005-4537.

    Google Scholar 

  48. LCROSS Science Payload Ground Development, Test and Calibration Results, Ennico, K.; Colaprete, A.; Wooden, D.; Heldmann, J. L.; Kojima, G.; Shirley, M., 2008, 39th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXIX), LPI Contribution No. 1391, p.1474.

    Google Scholar 

  49. Mars Global Surveyor Mission: Overview and Status, Albee, A. L., Palluconi, F. D.; Arvidson, R. E., 1998, Science, 279, 1671.

    Google Scholar 

  50. The Sun, D. Alexander, 2010, Greenwood Guides to the Universe, Greenwood.

    Google Scholar 

  51. Temporal variations of strength and location of the South Atlantic Anomaly as measured by RXTE, Fürst, F., Wilms, J., Rothschild, R. E., Pottschmidt, K., Smith, D. M., Lingenfelter, R., 2009, Earth and Planetary Science Letters, 281, 125.

    Google Scholar 

  52. Storms from the Sun: The emerging science of space weather, Carlowicz, M. J. and Lopez, R. E., 2002, The Joseph Henry Press, Washington, DC (USA).

    Google Scholar 

  53. A Critical Overview on Spacecraft Charging Mitigation Methods, Lai, 2003, IEEE Transactions on Plasma Science, 31, 1118

    Google Scholar 

  54. Atomic Oxygen Effects on Spacecraft Materials, Banks et al. 2003, NASA/TM—2003-212484

    Google Scholar 

  55. Cleanrooms and associated controlled Environments, ISO-14644-1

    Google Scholar 

  56. Space Product Assurance Cleanliness and Contamination Control, European Space Agency, ECSS-Q-70-01A, 2002.

    Google Scholar 

  57. Product Cleanliness levels and Contamination Control Program, MIL-STD-1246C, 1994.

    Google Scholar 

  58. The detection of organic contamination of surfaces by infrared spectroscopy, European Space Agency, ECSS-Q-70-05A, 2005.

    Google Scholar 

  59. Space shuttle glow observations, Banks, P. M., Williamson, P. R. & Raitt, W. J., 1983, Geophys. Res. Lett. 10,118.

    Google Scholar 

  60. Spacecraft Thermal Control Handbook Volume II: Cryogenics, Martin Donabedian, 2003, Aerospace Press Series, Aerospace Press.

    Google Scholar 

  61. The Wide-Field Infrared Survey Explorer (WISE), Duval, V.G., Irace, W.R., Mainzer, A.K. and Wright, E.L., 2004, Optical, Infrared, and Millimeter Space Telescopes. Edited by Mather, John C. Proceedings of the SPIE, 5487, 101.

    Google Scholar 

  62. The Spitzer Space Telescope Mission, Werner, M.W. et al., 2004, ApJ Supp., 154, 1.

    Google Scholar 

  63. Information theory, Inference and Learning Algorithms, MacKay, D. J. C., 2003, Cambridge University Press.

    Google Scholar 

  64. State of The Art Lossless Image Compression Algorithms, Sahni, S., Vemuri, B.C., Chen, F., Kapoor, C., Leonard, C., and Fitzsimmons, J., 1998, IEEE Proceedings of the International Conference on Image Processing, Chicago, Illinois, 948.

    Google Scholar 

  65. Cost-Effective Space Mission Operations, Boden, D. G. and Larson, W. J., 1996, College Custom Series, McGraw-Hill, New York.

    Google Scholar 

  66. Calibration and flight of the NRL EIT CalRoc, Newmark J. S. et al., 2000, Proc. SPIE Vol. 4139, p. 328-339, Instrumentation for UV/EUV Astronomy and Solar Missions, Silvano Fineschi; Clarence M. Korendyke; Oswald H. Siegmund; Bruce E. Woodgate; Eds.

    Google Scholar 

  67. Performance of CdSe tetrapods-gold as nanostructure electrochemical materials in photovoltaic cells, Liu, T.-Y., Eukel, J.A.,   Bagaria, H.,   Wong, M.S.,   Pasquali, M., and   Schmidt, H.K., 2009, in Photovoltaic Specialists Conference (PVSC), 34th IEEE, 2074.

    Google Scholar 

  68. Graphene-Based Ultracapacitors, Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S., 2008, Nano Lett., 8, 3498.

    Google Scholar 

  69. Results from the Deep Space 1 Technology Validation Mission, Rayman, M.D., Varghese, P., Lehman, D.H. and Livesay, L., 2000, Acta Astronautica 47, 475.

    Google Scholar 

  70. Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres, Rayman, M.D., Fraschetti, T. C., Raymond, C. A. and Russell, C. T., 2006, Acta Astronautica 58, 605.

    Google Scholar 

  71. Solar Sailing: Technology, Dynamics and Mission Applications, McInnes, C.R., 1999, Springer-Praxis, Chichester.

    Google Scholar 

  72. Microscopic Approach to Analyze Solar-Sail Space-Environment Effects, Kezerashvili, R.Y. and Matloff, G.L., 2009, Advances in Space Research, 44, 859.

    Google Scholar 

  73. The FIRST/Planck Mission. Cryogenic systems - Current Status, Collaudin B. and Passvogel, T., 1998, Proc. SPIE Vol. 3356, p. 1114-1126, Space Telescopes and Instruments V, Pierre Y. Bely; James B. Breckinridge; Eds.

    Google Scholar 

  74. Quantum Calorimetry, Stahle, C.K., McCammon, D. and Irwin, K.D., 1999, Physics Today, 52, 32.

    Google Scholar 

  75. A miniature continuous adiabatic demagnetization refrigerator with compact shielded superconducting magnets, Duval, J.-M., Cain, B.M. and Timbie, P.T., 2004, Millimeter and Sub-millimeter Detectors for Astronomy II, Edited by Jonas Zmuidzinas, Wayne S. Holland and Stafford Withington Proceedings of the SPIE, 5498, 802.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexander, D., Murphy, N. (2014). Payload Design and Sizing. In: Macdonald, M., Badescu, V. (eds) The International Handbook of Space Technology. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41101-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41101-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41100-7

  • Online ISBN: 978-3-642-41101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics