Skip to main content

Noisy Information: Optimality, Complexity, Tractability

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2012

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 65))

Abstract

In this paper, we present selected old and new results on the optimal solution of linear problems based on noisy information, where the noise is bounded or random. This is done in the framework of information-based complexity (IBC), and the main focus is on the following questions:

  1. (i)

    What is an optimal algorithm for given noisy information?

  2. (ii)

    What is the \(\varepsilon\)-complexity of a problem with noisy information?

  3. (iii)

    When is a multivariate problem with noisy information tractable?

The answers are given for the worst case, average case, and randomized (Monte Carlo) settings. For (ii) and (iii) we present a computational model in which the cost of information depends on the noise level. For instance, for integrating a function \(f: D \rightarrow \mathbb{R}\), available information may be given as

$$\displaystyle{y_{j} = f(\mathrm{t}_{j}) + x_{j},\qquad 1 \leq j \leq n,}$$

with \(x_{j}\mathop{ \sim }\limits^{\mathrm{ i.i.d.}}\mathcal{N}(0,\sigma _{j}^{2})\). For this information one pays \(\sum _{j=1}^{n}c(\sigma _{j})\) where c:[0, ) → [0, ] is a given cost function. We will see how the complexity and tractability of linear multivariate problems depend on the cost function, and compare the obtained results with noiseless case, in which c ≡ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhvalov, N.S.: On the optimality of linear methods for operator approximation in convex classes. Comput. Math. Math. Phys. 11, 244–249 (1971)

    Article  Google Scholar 

  2. Casella, G., Strawderman, W.E.: Estimating bounded normal mean. Ann. Statist. 9, 870–878 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Donoho, D.L.: Statistical estimation and optimal recovery. Ann. Statist. 22, 238–270 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho, D.L., Johnstone, I.M.: Minimax estimation via wavelet shrinkage. Ann. Statist. 26, 879–921 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptopia? J. Roy. Stat. Soc. ser. B 57, 301–369 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Donoho, D.L., Liu, R.C., MacGibbon, K.B.: Minimax risk over hyperrectangles, and implications. Ann. Statist. 18, 1416–1437 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heinrich, S.: Random approximation in numerical analysis. In: Berstadt et al. (ed.) Proceedings of the Functional Analysis Conference, Essen 1991, pp. 123–171. Marcel Dekker, New York (1993)

    Google Scholar 

  8. Hinrichs, A., Novak, E., Ulrich, M., Woźniakowski, H.: The curse of dimensionalty for numerical integration of smooth functions. Submitted

    Google Scholar 

  9. Ibragimov I.A., Hasminski, R.Z.: On the nonparametric estimation of the value of a linear functional in Gaussian white noise. Theory Probab. Appl. 29, 19–32 (1984). In Russian

    MATH  Google Scholar 

  10. Kacewicz, B.Z., Plaskota, L.: Noisy information for linear problems in the asymptotic setting. J. Complexity 7, 35–57 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuo, H.H.: Gaussian measures in banach spaces. In: Lecture Notes in Math, vol. 463. Springer, Berlin (1975)

    Google Scholar 

  12. Magaril-Il’yaev G.G., Osipenko, K.Yu.: On optimal recovery of functionals from inaccurate data. Matem. Zametki 50, 85–93 (1991). In Russian

    MathSciNet  MATH  Google Scholar 

  13. Melkman, A.A., Micchelli, C.A.: Optimal estimation of linear operators in Hilbert spaces from inaccurate data. SIAM J. Numer. Anal. 16, 87–105 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Micchelli, C.A., Rivlin, T.J.: A survey of optimal recovery. In: Estimation in Approximation Theory, pp. 1–54. Plenum, New York (1977)

    Google Scholar 

  15. Novak, E.: Deterministic and stochastic error bounds in numerical analysis. In: Lecture Notes in Mathematics, vol. 1349. Springer, Berlin (1988)

    Google Scholar 

  16. Novak, E.: On the power of adaption. J. Complexity 12, 199–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Volume I: linear information. In: EMS Tracts in Mathematics, vol. 6. European Mathematical Society, Zürich (2008)

    Google Scholar 

  18. Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Volume II: standard information for functionals. In: EMS Tracts in Mathematics, vol. 6. European Mathematical Society, Zürich (2010)

    Google Scholar 

  19. Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Volume III: standard information for operators. In: EMS Tracts in Mathematics, vol. 6. European Mathematical Society, Zürich (2012)

    Google Scholar 

  20. Nussbaum, M.: Spline smoothing in regression model and asymptotic efficiency in l 2. Ann. Stat. 13, 984–997 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Papageorgiou, A., Wasilkowski, G.: On the average complexity of multivariate problems. J. Complexity 6, 1–23 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pinsker, M.S.: Optimal filtering of square integrable signals in Gaussian white noise. Probl. Inform. Transm. 16, 52–68 (1980). In Russian

    MathSciNet  Google Scholar 

  23. Plaskota, L.: On average case complexity of linear problems with noisy information. J. Complexity 6, 199–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Plaskota, L.: A note on varying cardinality in the average case setting. J. Complexity 9, 458–470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Plaskota, L.: Average case approximation of linear functionals based on information with deterministic noise. J. Comput. Inform. 4, 21–39 (1994)

    Google Scholar 

  26. Plaskota, L.: Average complexity for linear problems in a model with varying noise of information. J. Complexity 11, 240–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Plaskota, L.: How to benefit from noise. J. Complexity 12, 175–184 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Plaskota, L.: Worst case complexity of problems with random information noise. J. Complexity 12, 416–439 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Plaskota, L.: Noisy Information and Computational Complexity. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  30. Plaskota, L.: Average case uniform approximation in the presence of Gaussian noise. J. Approx. Theory 93, 501–515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smolyak, S.A.: On optimal recovery of functions and functionals of them. Ph.D. thesis, Moscow State University (1965). In Russian

    Google Scholar 

  32. Sukharev, A.G.: On the existence of optimal affine methods for approximating linear functionals. J. Complexity 2, 317–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tikhonov, A.N., Goncharsky A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  34. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic, New York (1980)

    Google Scholar 

  35. Vakhania, N.N., Tarieladze, V.I., Chobanyan, S.A.: Probability Distributions on Banach Spaces. Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  36. Wahba, G.: Spline models for observational data. In: CBMS-NSF Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

  37. Wasilkowski, G.W.: Information of varying cardinality. J. Complexity 2, 204–228 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Werschulz, A.G., Woźniakowski, H.: Are linear algorithms always good for linear problems? Aequations Math. 30, 202–212 (1986)

    Article  Google Scholar 

  39. Woźniakowski, H.: Tractability and strong tractability of linear mulivariate problems. J. Complexity 10, 96–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Higher Education of Poland under the research grant N N201 547738. The author highly appreciates valuable comments from Henryk Woźniakowski and two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Plaskota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plaskota, L. (2013). Noisy Information: Optimality, Complexity, Tractability. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41095-6_7

Download citation

Publish with us

Policies and ethics