Skip to main content

Hit-and-Run for Numerical Integration

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2012

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 65))

Abstract

We study the numerical computation of an expectation of a bounded function f with respect to a measure given by a non-normalized density on a convex body \(K \subset {\mathbb{R}}^{d}\). We assume that the density is log-concave, satisfies a variability condition and is not too narrow. In [19, 25, 26] it is required that K is the Euclidean unit ball. We consider general convex bodies or even the whole \({\mathbb{R}}^{d}\) and show that the integration problem satisfies a refined form of tractability. The main tools are the hit-and-run algorithm and an error bound of a multi run Markov chain Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adell, J., Jodrá, P.: Sharp estimates for the median of the Γ(n + 1, 1) distribution. Stat. Probab. Lett. 71, 185–191 (2005)

    Article  MATH  Google Scholar 

  2. Aldous, D.: On the Markov chain simulation method for uniform combinatorial distributions and simulated annealing. Probab. Engrg. Inform. Sci. 1, 33–46 (1987)

    Article  MATH  Google Scholar 

  3. Bélisle, C., Romeijn, E., Smith, R.: Hit-and-run algorithms for generating multivariate distributions. Math. Oper. Res. 18, 255–266 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belloni, A., Chernozhukov, V.: On the computational complexity of MCMC-based estimators in large samples. Ann. Statist. 37, 2011–2055 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brooks, S., Gelman, A., Jones, G., Meng, X.: Handbook of Markov Chain Monte Carlo. Chapman & Hall, Boca Raton (2011)

    Book  MATH  Google Scholar 

  6. Casella, G., Robert, C.: Monte Carlo Statistical Methods, 2nd edn. Springer Texts in Statistics. Springer, New York (2004)

    MATH  Google Scholar 

  7. Fort, G., Moulines, E., Roberts, G., Rosenthal, J.: On the geometric ergodicity of hybrid samplers. J. Appl. Probab. 40, 123–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. Chapman & Hall, Boca Raton (1996)

    Book  MATH  Google Scholar 

  9. Joulin, A., Ollivier, Y.: Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab. 38, 2418–2442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karawatzki, R., Leydold, J., Potzelberger, K.: Automatic Markov chain Monte Carlo procedures for sampling from multivariate distributions. Tech. Rep. 27, Department of Statistics and Mathematics, WU Wien (2005)

    Google Scholar 

  11. Łatuszyński, K., Miasojedow, B., Niemiro, W.: Nonasymptotic bounds on the estimation error of MCMC algorithms. ArXiv e-prints (2011)

    Google Scholar 

  12. Łatuszyński, K., Miasojedow, B., Niemiro, W.: Nonasymptotic bounds on the mean square error for MCMC estimates via renewal techniques. ArXiv e-prints (2011)

    Google Scholar 

  13. Łatuszyński, K., Niemiro, W.: Rigorous confidence bounds for MCMC under a geometric drift condition. J. Complexity 27, 23–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lovász, L., Simonovits, M.: Random walks in a convex body and an improved volume algorithm. Random Structures Algorithms 4, 359–412 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász, L., Vempala, S.: Fast algorithms for logconcave functions: sampling, rounding, integration and optimization. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’06, Berkeley, pp. 57–68. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  16. Lovász, L., Vempala, S.: Hit-and-run from a corner. SIAM J. Comput. 35, 985–1005 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovász, L., Vempala, S.: The geometry of logconcave functions and sampling algorithms. Random Structures Algorithms 30, 307–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martinelli, F.: Relaxation times of Markov chains in statistical mechanics and combinatorial structures. In: Probability on Discrete Structures. Encyclopaedia Mathematical Sciences, vol. 110, pp. 175–262. Springer, Berlin (2004)

    Google Scholar 

  19. Mathé, P., Novak, E.: Simple Monte Carlo and the Metropolis algorithm. J. Complexity 23, 673–696 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. 1: Linear Information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008)

    Google Scholar 

  21. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. 2: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12. European Mathematical Society (EMS), Zürich (2010)

    Google Scholar 

  22. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. 3: Standard Information for Operators. EMS Tracts in Mathematics, vol. 12. European Mathematical Society (EMS), Zürich (2012)

    Google Scholar 

  23. Roberts, G., Rosenthal, J.: Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab. 2, 13–25 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Roberts, G., Rosenthal, J.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rudolf, D.: Explicit error bounds for lazy reversible Markov chain Monte Carlo. J. Complexity 25, 11–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rudolf, D.: Explicit error bounds for Markov chain Monte Carlo. Dissertationes Math. 485, 93 (2012)

    MathSciNet  Google Scholar 

  27. Sokal, A.: Monte Carlo methods in statistical mechanics: foundations and new algorithms. In: Functional Integration (Cargèse, 1996). NATO Advanced Study Institutes Series B Physics, vol. 361, pp. 131–192. Plenum, New York (1997)

    Google Scholar 

  28. Ullrich, M.: Comparison of Swendsen-Wang and heat-bath dynamics. ArXiv e-prints (2011)

    Google Scholar 

  29. Ullrich, M.: Swendsen-wang is faster than single-bond dynamics. ArXiv e-prints (2012)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the comments of the referees and wants to express his thanks to the local organizers of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing for their hospitality. The research was supported by the DFG Priority Program 1324, the DFG Research Training Group 1523, and an Australian Research Council Discovery Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rudolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rudolf, D. (2013). Hit-and-Run for Numerical Integration. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41095-6_31

Download citation

Publish with us

Policies and ethics