Skip to main content

Extended Latin Hypercube Sampling for Integration and Simulation

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2012

Abstract

We analyze an extended form of Latin hypercube sampling technique that can be used for numerical quadrature and for Monte Carlo simulation. The technique utilizes random point sets with enhanced uniformity over the s-dimensional unit hypercube. A sample of N = n s points is generated in the hypercube. If we project the N points onto their ith coordinates, the resulting set of values forms a stratified sample from the unit interval, with one point in each subinterval \([(k - 1)/N,k/N)\). The scheme has the additional property that when we partition the hypercube into N subcubes \(\prod _{i=1}^{s}[(\ell_{i} - 1)/n,\ell_{i}/n)\), each one contains exactly one point. We establish an upper bound for the variance, when we approximate the volume of a subset of the hypercube, with a regular boundary. Numerical experiments assess that the bound is tight. It is possible to employ the extended Latin hypercube samples for Monte Carlo simulation. We focus on the random walk method for diffusion and we show that the variance is reduced when compared with classical random walk using ordinary pseudo-random numbers. The numerical comparisons include stratified sampling and Latin hypercube sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, R.C.H., Davenport, T.: The problem of dimensionality in stratified sampling. Management Science 35, 1278–1296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. El-Haddad, R., Fakhreddine, R., Lécot, C.: Stratified Monte Carlo integration. In: Sabelfeld, K.K., Dimov, I. (eds.) Monte Carlo Methods and Applications, pp. 105–113. De Gruyter, Berlin (2013)

    Google Scholar 

  3. El-Haddad, R., Lécot, C., L’Ecuyer, P.: Quasi-Monte Carlo simulation of discrete-time Markov chains on multidimensional state spaces. In: Keller, A., Heinrich, S., Niederreiter H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 413–429. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  4. El-Haddad, R., Lécot, C., Venkiteswaran, G.: Quasi-Monte Carlo simulation of diffusion in a spatially nonhomogeneous medium. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 339–354. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  5. Evans, M., Swartz, T.: Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  6. Farnell, L., Gibson, W.G.: Monte Carlo simulation of diffusion in a spatially nonhomogeneous medium: correction to the Gaussian steplength. J. Comput. Phys. 198, 65–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fishman, G.S.: Monte Carlo. Springer, New York (1996)

    Book  MATH  Google Scholar 

  8. Ghoniem, A.F., Sherman, F.S.: Grid-free simulation of diffusion using random walk methods. J. Comput. Phys. 61, 1–37 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)

    MATH  Google Scholar 

  10. Haber, S.: A modified Monte-Carlo quadrature. Math. Comp. 20, 361–368 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lécot, C.: A Direct Simulation Monte Carlo scheme and uniformly distributed sequences for solving the Boltzmann equation. Computing 41, 41–57 (1988)

    Article  Google Scholar 

  12. Lécot, C., El-Khettabi, F.: Quasi-Monte Carlo simulation of diffusion. J. Complexity 15, 342–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lécot, C., Tuffin, B.: Quasi-Monte Carlo methods for estimating transient measures of discrete time Markov chains. In: Niederreiter H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 329–343. Springer, Berlin/Heidelberg (2004)

    Chapter  Google Scholar 

  14. L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56, 958–975 (2008)

    Article  MATH  Google Scholar 

  15. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Morokoff, W.J., Caflisch, R.E.: A Quasi-Monte Carlo approach to particle simulation of the heat equation. SIAM J. Numer. Anal. 30, 1558–1573 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  18. Owen, A.B.: Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica 2, 439–452 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Owen, A.B.: Lattice sampling revisited: Monte Carlo variance of means over randomized orthogonal arrays. Ann. Statist. 22, 930–945 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Owen, A.B.: Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34, 1884–1910 (1997)

    Article  MathSciNet  Google Scholar 

  21. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, B.: Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88, 1392–1397 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Venkiteswaran, G., Junk, M.: A QMC approach for high dimensional Fokker-Planck equations modelling polymeric liquids. Math. Comput. Simulation 68, 45–56 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami El Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haddad, R.E., Fakhereddine, R., Lécot, C., Venkiteswaran, G. (2013). Extended Latin Hypercube Sampling for Integration and Simulation. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41095-6_13

Download citation

Publish with us

Policies and ethics