Skip to main content

Probabilistic Star Discrepancy Bounds for Double Infinite Random Matrices

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2012

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 65))

Abstract

In 2001 Heinrich, Novak, Wasilkowski and Woźniakowski proved that the inverse of the discrepancy depends linearly on the dimension, by showing that a Monte Carlo point set \(\mathcal{P}\) of N points in the s-dimensional unit cube satisfies the discrepancy bound \(D_{N}^{{\ast}s}(\mathcal{P}) \leq c_{\mathrm{abs}}{s}^{1/2}{N}^{-1/2}\) with positive probability. Later their results were generalized by Dick to the case of double infinite random matrices. In the present paper we give asymptotically optimal bounds for the discrepancy of such random matrices, and give estimates for the corresponding probabilities. In particular we prove that the N × s-dimensional projections \(\mathcal{P}_{N,s}\) of a double infinite random matrix satisfy the discrepancy estimate

$$\displaystyle{D_{N}^{{\ast}s}(\mathcal{P}_{ N,s}) \leq {\left (2130 + 308\,\frac{\ln \ln N} {s} \right )}^{1/2}{s}^{1/2}{N}^{-1/2}}$$

for all N and s with positive probability. This improves the bound \(D_{N}^{{\ast}s}(\mathcal{P}_{N,s}) \leq {\left (c_{\mathrm{abs}}\,\ln N\right )}^{1/2}{s}^{1/2}{N}^{-1/2}\) given by Dick. Additionally, we show how our approach can be used to show the existence of completely uniformly distributed sequences of small discrepancy which find applications in Markov Chain Monte Carlo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aistleitner, C.: Covering numbers, dyadic chaining and discrepancy. J. Complexity 27, 531–540 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aistleitner, C.: On the inverse of the discrepancy for infinite dimensional infinite sequences. J. Complexity 29, 182–194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S., Dick, J., Owen, A.B.: Consistency of Markov chain quasi-Monte Carlo on continuous state spaces. Ann. Statist. 39, 673–701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dick, J.: A note on the existence of sequences with small star discrepancy. J. Complexity 23, 649–652 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doerr, B.: A lower bound for the discrepancy of a random point set. J. Complexity (2013). doi:10.1016/j.jco.2013.06.001

    Google Scholar 

  6. Doerr, B., Gnewuch, M., Kritzer, P., Pillichshammer, F.: Component-by-component construction of low-discrepancy point sets of small size. Monte Carlo Methods Appl. 14, 129–149 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol. 1651. Springer, Berlin (1997)

    Google Scholar 

  8. Einmahl, U., Mason, D.M.: Some universal results on the behavior of increments of partial sums. Ann. Probab. 24, 1388–1407 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gnewuch, M.: Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy. J. Complexity 24, 154–172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gnewuch, M.: Construction of minimal bracketing covers for rectangles. Electron. J. Combin. 15 (2008), Research Paper 95, 20pp

    Google Scholar 

  11. Gnewuch, M.: Entropy, randomization, derandomization, and discrepancy. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 43–78. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  12. Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory Ser. A 69, 217–232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hinrichs, A.: Covering numbers, Vapnik-Červonenkis classes and bounds for the star-discrepancy. J. Complexity 20, 477–483 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith. 96, 279–302 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience [Wiley], New York (1974)

    Google Scholar 

  16. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. Springer, New York (2008)

    MATH  Google Scholar 

  17. Matoušek, J.: Geometric Discrepancy. An Illustrated Guide. Algorithms and Combinatorics, vol. 18. Springer, Berlin (2010). Revised paperback reprint of the 1999 original

    Google Scholar 

  18. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume I: Linear Information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008)

    Google Scholar 

  19. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12. European Mathematical Society (EMS), Zürich (2010)

    Google Scholar 

  20. Philipp, W.: Mixing Sequences of Random Variables and Probablistic Number Theory. Memoirs of the American Mathematical Society, vol. 114. American Mathematical Society, Providence (1971)

    Google Scholar 

  21. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in Statistics, 2nd edn. Springer, New York (2004)

    Google Scholar 

  22. Talagrand, M.: Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22, 28–76 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by the Austrian Research Foundation (FWF), Project S9603-N23.

The questions considered in the present paper arose during discussions with several colleagues at the MCQMC 2012 conference. We particularly want to thank Josef Dick for pointing out to us the connection between the discrepancy of random matrices, complete uniform distribution and Markov Chain Monte Carlo. Finally, we wish to express our gratitude to the two anonymous referees who helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Aistleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aistleitner, C., Weimar, M. (2013). Probabilistic Star Discrepancy Bounds for Double Infinite Random Matrices. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41095-6_10

Download citation

Publish with us

Policies and ethics