Skip to main content

Activity Recognition System Using Non-intrusive Devices through a Complementary Technique Based on Discrete Methods

  • Conference paper
Evaluating AAL Systems Through Competitive Benchmarking (EvAAL 2013)

Abstract

This paper aims to develop a cheap, comfortable and, specially, efficient system which controls the physical activity carried out by the user. For this purpose an extended approach to physical activity recognition is presented, based on the use of discrete variables which employ data from accelerometer sensors. To this end, an innovative selection, discretization and classification technique to make the recognition process in an efficient way and at low energy cost, is presented in this work based on Ameva discretization. Entire process is executed on the smartphone and on a wireless health monitoring system is used when the smartphone is not used taking into account the system energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 1541. AAAI Press, MIT Press, Menlo Park, Cambridge (2005)

    Google Scholar 

  2. Hong, Y., Kim, I., Ahn, S., Kim, H.: Activity recognition using wearable sensors for elder care. In: Second International Conference on Future Generation Communication and Networking, vol. 2, pp. 302–305. IEEE (2008)

    Google Scholar 

  3. Brezmes, T., Gorricho, J.-L., Cotrina, J.: Activity recognition from accelerometer data on a mobile phone. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 796–799. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Lepri, B., Mana, N., Cappelletti, A., Pianesi, F., Zancanaro, M.: What is happening now? Detection of activities of daily living from simple visual features. Personal and Ubiquitous Computing 14(8), 749–766 (2010)

    Article  Google Scholar 

  5. Bicocchi, N., Mamei, M., Zambonelli, F.: Detecting activities from body-worn accelerometers via instance-based algorithms. Pervasive and Mobile Computing 6(4), 482–495 (2010)

    Article  Google Scholar 

  6. Paoli, R., Fernández-Luque, F., Zapata, J.: A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote. Expert Systems with Applications (2011)

    Google Scholar 

  7. Kwapisz, J., Weiss, G., Moore, S.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter 12(2), 74–82 (2011)

    Article  Google Scholar 

  8. Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10), 3605–3620 (2010)

    Article  MATH  Google Scholar 

  9. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks 6(2), 13 (2010)

    Article  Google Scholar 

  10. Fuentes, D., Gonzalez-Abril, L., Angulo, C., Ortega, J.: Online motion recognition using an accelerometer in a mobile device. Expert Systems with Applications 39(3), 2461–2465 (2012)

    Article  Google Scholar 

  11. Cuberos, F., Ortega, J., Velasco, F., González, L.: Qsi-alternative labelling and noise sensitivity. In: 17th International Workshop on Qualitative Reasoning (2003)

    Google Scholar 

  12. Gonzalez-Abril, L., Cuberos, F., Velasco, F., Ortega, J.: Ameva: An autonomous discretization algorithm. Expert Systems with Applications 36(3), 5327–5332 (2009)

    Article  Google Scholar 

  13. Kurgan, L., Cios, K.: Caim discretization algorithm. IEEE Transactions on Knowledge and Data Engineering 16(2), 145–153 (2004)

    Article  Google Scholar 

  14. Álvarez García, J.A., Barsocchi, P., Chessa, S., Salvi, D.: Evaluation of localization and activity recognition systems for ambient assisted living: The experience of the 2012 evaal competition. Journal of Ambient Intelligence and Smart Environments 5(1), 119–132 (2013)

    Google Scholar 

  15. Nergui, M., Yoshida, Y., Gonzalez, J., Koike, Y., Sekine, M., Yu, W.: Human motion tracking and measurement by a mobile robot. In: 7th International Conference on Intelligent Unmanned Systems (2011)

    Google Scholar 

  16. Hong, J.H., Ramos, J., Dey, A.K.: Understanding physiological responses to stressors during physical activity. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 270–279. ACM (2012)

    Google Scholar 

  17. Li, N., Crane, M., Ruskin, H.J.: Automatically detecting “significant events” on sensecam. Ercim News 2011(87) (2011)

    Google Scholar 

  18. Wolf, C., Mille, J., Lombardi, E., Celiktutan, O., Jiu, M., Baccouche, M., Dellandréa, E., Bichot, C.E., Garcia, C., Sankur, B.: The liris human activities dataset and the icpr 2012 human activities recognition and localization competition. Technical Report LIRIS RR-2012-004, Laboratoire d’Informatique en Images et Systmes d’Information, INSA de Lyon, France (2012)

    Google Scholar 

  19. Sagha, H., Digumarti, S.T., del Millan, J., Chavarriaga, R., Calatroni, A., Roggen, D., Troster, G.: Benchmarking classification techniques using the opportunity human activity dataset. In: 2011 IEEE International Conference on Systems, Man and Cybernetics, pp. 36–40. IEEE (2011)

    Google Scholar 

  20. Kawaguchi, N., Ogawa, N., Iwasaki, Y., Kaji, K., Terada, T., Murao, K., Inoue, S., Kawahara, Y., Sumi, Y., Nishio, N.: Hasc challenge: gathering large scale human activity corpus for the real-world activity understandings. In: Proceedings of the 2nd Augmented Human International Conference, p. 27. ACM (2011)

    Google Scholar 

  21. Loseu, V., Jafari, R.: Power aware wireless data collection for bsn data repositories. In: 2011 International Conference on Body Sensor Networks, pp. 19–21. IEEE (2011)

    Google Scholar 

  22. He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and svm. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 5041–5044. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Concepción, M.Á.Á., Morillo, L.M.S., Abril, L.G., Ramírez, J.A.O. (2013). Activity Recognition System Using Non-intrusive Devices through a Complementary Technique Based on Discrete Methods. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds) Evaluating AAL Systems Through Competitive Benchmarking. EvAAL 2013. Communications in Computer and Information Science, vol 386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41043-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41043-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41042-0

  • Online ISBN: 978-3-642-41043-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics