Skip to main content

Critical Size in Ferroelectricity

  • Chapter
  • First Online:
Ferroelectricity at the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

  • 1689 Accesses

Abstract

The critical size l cr is defined as the maximal thickness of a film or the maximal size of a crystal at which ferroelectricity is impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  CAS  Google Scholar 

  2. L. Landau, E. Lifshitz, Statistical Physics Part I (Pergamon, Oxford, 1980)

    Google Scholar 

  3. V. Ginzburg, Zh. Eksp. Teor. Fiz. 15, 739 (1945) [J. Phys. USSR 10 107(1946)]

    Google Scholar 

  4. V. Ginzburg, Zh. Eksp. Teor. Fiz. 19, 36 (1949)

    Google Scholar 

  5. K. Ishikawa et al., Phys. Rev. B 37, 5852 (1988)

    Article  CAS  Google Scholar 

  6. S. Palto et al., Ferroelectr. Lett. 19, 65 (1995)

    Article  CAS  Google Scholar 

  7. A. Bune et al., Nature (London) 391, 874 (1998)

    Article  CAS  Google Scholar 

  8. H. Qu et al., Appl. Phys. Lett. 82, 4322 (2003)

    Article  CAS  Google Scholar 

  9. V. Fridkin et al., Ferroelectrics 314, 37 (2005)

    Article  CAS  Google Scholar 

  10. V. Fridkin et al., Phys. Usp. 49(2), 193 (2006)

    Article  CAS  Google Scholar 

  11. O. Auciello et al., Phys. Today 51(7), 22 (1998)

    Article  CAS  Google Scholar 

  12. H. Kohlstedt et al., Mat. Res. Soc. Symp. Proc. 688, 651 (2002)

    Google Scholar 

  13. S. Li et al., Phys. Lett. A 212, 341 (1996)

    Article  CAS  Google Scholar 

  14. I. Batra et al., Solid State Commun. 11, 291 (1972)

    Article  CAS  Google Scholar 

  15. J. Scott, Ferroelectr. Rev. 1, 1 (1998)

    Article  CAS  Google Scholar 

  16. N. Yanase et al., Jpn. J. Appl. Phys. 38, 5305 (1999)

    Article  CAS  Google Scholar 

  17. J. Karasawa et al., Integr. Ferroelectrics 12, 105 (1996)

    Article  CAS  Google Scholar 

  18. S. Li et al., Jpn. J. Appl. Phys. 36, 5169 (1997)

    Article  CAS  Google Scholar 

  19. T. Maruyama et al., Appl. Phys. Lett. 73, 3524 (1998)

    Article  CAS  Google Scholar 

  20. T. Tybell et al., Appl. Phys. Lett. 75, 856 (1999)

    Article  CAS  Google Scholar 

  21. Ph Ghosez et al., Appl. Phys. Lett. 76, 2767 (2000)

    Article  CAS  Google Scholar 

  22. A. Zembilgotov et al., J. Appl. Phys. 91, 2247 (2002)

    Article  CAS  Google Scholar 

  23. D. Tilley et al., Solid State Commun. 49, 823 (1984)

    Article  Google Scholar 

  24. Glinchuk M et al., J. Phys.: Cond. Matter 16, 3517 (2004)

    Google Scholar 

  25. P G. DeGennes, Solid State Commun. 1, 132 (1963)

    Google Scholar 

  26. C L. Wang, W.L. Zhong, P.L. Zhang, Phys.: Cond. Matter 3, 4743 (1992)

    Google Scholar 

  27. M. Cottam et al., J. Phys. C17, 1793 (1984)

    Google Scholar 

  28. D. Fong et al., Science 304, 1650 (2004)

    Article  CAS  Google Scholar 

  29. Y. Kim et al., in Proceedings of the Workshop Nanoelectronics Day 2005, Abstract book, Forschungszentrum Juelich (2005), p. 29

    Google Scholar 

  30. N. Spaldin, Science 304, 1606 (2004)

    Article  CAS  Google Scholar 

  31. A. Bratkovsky et al., Phys. Rev. Lett. 94, 017601 (2005)

    Article  Google Scholar 

  32. C. Duan et al., Phys. Rev. Lett. 97, 047201 (2006)

    Article  Google Scholar 

  33. E. Maximov et al., Solid State Commun. 101, 393 (1997)

    Article  Google Scholar 

  34. B. Meyer et al., Phys. Rev. B 63, 205426 (2001)

    Article  Google Scholar 

  35. J. Junquera et al., Nature 422, 506 (2003)

    Article  CAS  Google Scholar 

  36. V. Ginzburg, Phys. Usp. 38, 490 (1949)

    CAS  Google Scholar 

  37. M. Lines, Glass a Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Fridkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fridkin, V., Ducharme, S. (2014). Critical Size in Ferroelectricity. In: Ferroelectricity at the Nanoscale. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41007-9_3

Download citation

Publish with us

Policies and ethics