Skip to main content

Inorganic Polymers: Morphogenic Inorganic Biopolymers for Rapid Prototyping Chain

  • Chapter
  • First Online:
Biomedical Inorganic Polymers

Abstract

In recent years, considerable progress has been achieved towards the development of customized scaffold materials, in particular for bone tissue engineering and repair, by the introduction of rapid prototyping or solid freeform fabrication techniques. These new fabrication techniques allow to overcome many problems associated with conventional bone implants, such as inadequate external morphology and internal architecture, porosity and interconnectivity, and low reproducibility. However, the applicability of these new techniques is still hampered by the fact that high processing temperature or a postsintering is often required to increase the mechanical stability of the generated scaffold, as well as a post-processing, i.e., surface modification/functionalization to enhance the biocompatibility of the scaffold or to bind some bioactive component. A solution might be provided by the introduction of novel inorganic biopolymers, biosilica and polyphosphate, which resist harsh conditions applied in the RP chain and are morphogenetically active and do not need supplementation by growth factors/cytokines to stimulate the growth and the differentiation of bone-forming cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn K, Kornberg A (1990) Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265:11734–11739

    CAS  PubMed  Google Scholar 

  • Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101

    PubMed Central  PubMed  Google Scholar 

  • Antonov EN, Bagratashvili VN, Whitaker MJ, Barry JJ, Shakesheff KM, Konovalov AN, Popov VK, Howdle SM (2004) Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater 17:327–330

    PubMed Central  PubMed  Google Scholar 

  • Bagaria V, Deshpande S, Rasalkar DD, Kuthe A, Paunipagar BK (2011) Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol 80:814–820

    PubMed  Google Scholar 

  • Ballanti P, Minisola S, Pacitti MT, Scarnecchia L, Rosso R, Mazzuoli GF, Bonucci E (1997) Tartrate-resistant acid phosphate activity as osteoclastic marker: sensitivity of cytochemical assessment and serum assay in comparison with standardized osteoclast histomorphometry. Osteoporos Int 7:39–43

    CAS  PubMed  Google Scholar 

  • Baud’huin M, Lamoureux F, Duplomb L, Rédini F, Heymann D (2007) RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci 64:2334–2350

    PubMed  Google Scholar 

  • Beck GR Jr, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine 8:793–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30:2563–2567

    CAS  Google Scholar 

  • Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041

    CAS  PubMed  Google Scholar 

  • Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7:907–920

    CAS  PubMed  Google Scholar 

  • Calvert P (2007) Printing cells. Science 318:208–209

    CAS  PubMed  Google Scholar 

  • Carlisle EM (1972) Silicon: an essential element for the chick. Science 178:619–621

    CAS  PubMed  Google Scholar 

  • Carlisle EM (1986) Silicon as an essential trace element in animal nutrition. In: Evered D, O’Connor M (eds) Silicon biochemistry, vol 121, Ciba Foundation symposium. Wiley, Chichester, pp 123–136

    Google Scholar 

  • Deliormanli AM, Rahaman MN (2012) Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair. J Eur Ceram Soc 32:3637–3646

    CAS  Google Scholar 

  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66

    PubMed Central  PubMed  Google Scholar 

  • Epple M (2007) Biomimetic bone substitution materials. In: Epple M, Baeuerlein E (eds) Biomineralisation: medical and clinical aspects. Wiley-VCH, Weinheim, pp 81–95

    Google Scholar 

  • Eqtesadi S, Motealleh A, Miranda P, Lemos A, Rebelo A, Ferreira JMF (2013) A simple recipe for direct writing complex 45S5 Bioglass. sup. [R] 3D scaffolds. Mater Lett 93:68–71

    CAS  Google Scholar 

  • Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28:113–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed 8:63–75

    CAS  PubMed  Google Scholar 

  • Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26:181–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruner D, Shen ZJ (2011) Ordered coalescence of nano-crystals during rapid solidification of ceramic melts. CrystEngComm 13:5303–5305

    CAS  Google Scholar 

  • Gugala Z, Gogolewski S (2005) The in vitro growth and activity of sheep osteoblasts on three-dimensional scaffolds from poly(L/DL-lactide) 80/20%. J Biomed Mater Res A 75A:702–709

    CAS  Google Scholar 

  • Hill R (1996) An alternative view of the degradation of bioglass. J Mater Sci Lett 15:1122–1125

    CAS  Google Scholar 

  • Holzwarth U, Cotogno G (2012) Total hip arthroplasty – state of the art, challenges and prospects. Joint Research Centre of the European Commission, Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32:9622–9629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, Tsai CP, Kuo CT, Kang JC, Yang CS, Mou CY, Chen YC (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19:2014–2016

    CAS  PubMed  Google Scholar 

  • Jabbar S, Drury J, Fordham JN, Datta HK, Francis RM, Tuck SP (2011) Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J Clin Pathol 64:354–357

    CAS  PubMed  Google Scholar 

  • Janicki P, Schmidmaier G (2011) What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury 42(Suppl 2):S77–S81

    PubMed  Google Scholar 

  • Jejurikar A, Seow XT, Lawrie G, Martin D, Jayakrishnan A, Grøndahl L (2012) Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde. J Mater Chem 22:9751–9758

    CAS  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    CAS  PubMed  Google Scholar 

  • Kulaev IS, Vagabov V, Kulakovskaya T (2004) The biochemistry of inorganic polyphosphates. Wiley, New York, NY

    Google Scholar 

  • Kulakovskaya TV, Vagabov VM, Kulaev IS (2012) Inorganic polyphosphate in industry, agriculture and medicine: modern state and outlook. Process Biochem 47:1–10

    CAS  Google Scholar 

  • Lane NE, Yao W (2009) Developments in the scientific understanding of osteoporosis. Arthritis Res Ther 11:228

    PubMed Central  PubMed  Google Scholar 

  • Laurencin CT, El-Amin SF (2008) Xenotransplantation in orthopedic surgery. J Am Acad Orthop Surg 16:4–8

    PubMed  Google Scholar 

  • Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Miner Res 13:803–812

    CAS  PubMed  Google Scholar 

  • Li T, Yu YT, Wang J, Tang TS (2008) 1,25-Dihydroxyvitamin D(3) stimulates bone neovascularization by enhancing the interactions of osteoblasts-like cells and endothelial cells. J Biomed Mater Res A 86:583–588

    PubMed  Google Scholar 

  • Link T, Wang XH, Schloßmacher U, Feng QL, Schröder HC, Müller WEG (2013) An approach to a biomimetic bone scaffold: increased expression of BMP-2 and of osteoprotegerin in SaOS-2 cells grown onto silica-biologized 3D printed scaffolds. RSC Adv 3:11140–11147

    CAS  Google Scholar 

  • Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D (2011) In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci Mater Med 22:683–692

    CAS  PubMed  Google Scholar 

  • Lorenz B, Schröder HC (2001) Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 1547:254–261

    CAS  PubMed  Google Scholar 

  • Lorenz B, Müller WEG, Kulaev IS, Schröder HC (1994) Purification and characterization of an exopolyphosphatase activity from Saccharomyces cerevisiae. J Biol Chem 269:22198–22204

    CAS  PubMed  Google Scholar 

  • Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME, Jones JR (2012) Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos Trans A Math Phys Eng Sci 370:1422–1443

    CAS  PubMed  Google Scholar 

  • Martínez-Vázquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F (2010) Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater 6:4361–4368

    PubMed  Google Scholar 

  • Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51:245–256

    PubMed  Google Scholar 

  • Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26:5632–5639

    CAS  PubMed  Google Scholar 

  • Miranda P, Saiz E, Gryn K, Tomsia AP (2006) Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2:457–466

    PubMed  Google Scholar 

  • Miranda P, Pajares A, Guiberteau F (2008) Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater 4:1715–1724

    CAS  PubMed  Google Scholar 

  • Müller WEG, Lorenz A, Krasko A, Schröder HC (2003) Silicatein-mediated synthesis of amorphous silicates and siloxanes and their uses. European Patent 1320624, US Patent 7169589

    Google Scholar 

  • Müller WEG, Krasko A, Schröder HC (2007) Decomposition and modification of silicate and silicone by silicase and use of the reversible enzyme. European Patent EP1546319

    Google Scholar 

  • Müller WEG, Engel S, Wang X, Wolf SE, Tremel W, Thakur NL, Krasko A, Divekar M, Schröder HC (2008a) Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials 29:771–779

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Wiens M (2008b) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schloßmacher U, Wiens M (2009) Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials. Appl Microbiol Biotechnol 83:397–413

    PubMed Central  PubMed  Google Scholar 

  • Müller WEG, Wang X, Sinha B, Wiens M, Schröder HC, Jochum KP (2010) NanoSIMS: insights into the organization of the proteinaceous scaffold within hexactinellid sponge spicules. Chembiochem 11:1077–1082

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Diehl-Seifert B, Kropf K, Schloßmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011) Inorganic polymeric phosphate/polyphosphate is an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7:2661–2671

    PubMed  Google Scholar 

  • Müller WEG, Schwertner H, Schröder HC (2012) Enzymatic method for producing bioactive, osteoblast-stimulating surfaces and use thereof. European Patent 1740706

    Google Scholar 

  • Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang XH (2013a) Silicateins: a paradigm shift in bioinorganic chemistry. Enzymatic synthesis of inorganic polymeric silica. Chem Eur J 19:5790–5804

    PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Feng QL, Schlossmacher U, Link T, Wang XH (2013b) Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation. J Tissue Eng Regen Med. doi:10.1002/term.1745

  • Müller WEG, Wang XH, Jochum K, Schröder HC (2013c) Self-healing, an intrinsic property of biomineralization processes. IUBMB Life 65:382–396

    PubMed  Google Scholar 

  • Nickel J, Dreyer MK, Kirsch T, Sebald W (2001) The crystal structure of the BMP-2: BMPR-IA complex and the generation of BMP-2 antagonists. J Bone Joint Surg 83:S7–S14

    PubMed  Google Scholar 

  • Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishida J, Shimamura T (2008) Methods of reconstruction for bone defect after tumor excision: a review of alternatives. Med Sci Monit 14:RA107–RA113

    PubMed  Google Scholar 

  • Omelon SJ, Grynpas MD (2008) Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 108:4694–4715

    CAS  PubMed  Google Scholar 

  • Park A, Wu BM, Cima MJ (1998) Griffith LG (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) scaffolds allowing regionally selective hepatocyte and fibroblast adhesion. J Biomater Sci Polym Ed 9:89–110

    CAS  PubMed  Google Scholar 

  • Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J (2012) Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater 24:391–396

    CAS  Google Scholar 

  • Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33:1469–1490

    PubMed  Google Scholar 

  • Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25:1539–1560

    CAS  PubMed  Google Scholar 

  • Rao NN, Gómez-Garcıa MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647

    CAS  PubMed  Google Scholar 

  • Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5:335–341

    CAS  PubMed  Google Scholar 

  • Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018

    CAS  PubMed  Google Scholar 

  • Schloßmacher U, Wiens M, Schröder HC, Wang XH, Jochum KP, Müller WEG (2011) Silintaphin-1: interaction with silicatein during structure guiding biosilica formation. FEBS J 278:1145–1155

    PubMed  Google Scholar 

  • Schloßmacher U, Schröder HC, Wang XH, Feng QL, Diehl-Seifert B, Neumann S, Trautwein A, Müller WEG (2013) Alginate/silica composite hydrogel as a potential morphogenetically active scaffold for three-dimensional tissue engineering. RSC Adv 3:11185–11194

    Google Scholar 

  • Schröder HC, Lorenz B, Kurz L, Müller WEG (1999) Inorganic polyP in eukaryotes: enzymes, metabolism and function. In: Schröder HC, Müller WEG (eds) Inorganic polyphosphates—biochemistry, biology, biotechnology. Prog Mol Subcell Biol 23:45–81

    Google Scholar 

  • Schröder HC, Kurz L, Müller WEG, Lorenz B (2000) Polyphosphate in bone. Biochemistry (Mosc) 65:296–303

    Google Scholar 

  • Schröder HC, Borejko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (Silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res B Appl Biomater 75B:387–392

    Google Scholar 

  • Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474

    PubMed  Google Scholar 

  • Schröder HC, Wang XH, Manfrin A, Yu SH, Grebenjuk VA, Korzhev M, Wiens M, Schloßmacher U, Müller WEG (2012a) Silicatein: acquisition of structure-guiding and structure-forming properties during maturation from the pro-silicatein to the silicatein form. J Biol Chem 287:22196–22205

    PubMed  Google Scholar 

  • Schröder HC, Wang XH, Wiens M, Diehl-Seifert B, Kropf K, Schloßmacher U, Müller WEG (2012b) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206

    PubMed  Google Scholar 

  • Schwarz K, Milne DB (1972) Growth-promoting effects of silicon in rats. Nature 239:333–334

    CAS  PubMed  Google Scholar 

  • Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74B:782–788

    CAS  Google Scholar 

  • Seol YJ, Lee JY, Park YJ, Lee YM, Young-Ku RIC, Lee SJ, Han SB, Chung CP (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041

    CAS  PubMed  Google Scholar 

  • Shoichet MS, Li RH, White ML, Winn SR (1996) Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol Bioeng 50:374–381

    CAS  PubMed  Google Scholar 

  • Silva NR, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J (2011) Additive CAD/CAM process for dental prostheses. J Prosthodont 20:93–96

    PubMed  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    CAS  PubMed  Google Scholar 

  • Smidsrød O, Skåk-Bræk G (1990) Alginates as immobilization matrix for cells. Trends Biotechnol 8:71–78

    PubMed  Google Scholar 

  • Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P (2007) Bone scaffolds from electrospun fiber mats of poly (3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer 48:1419–1427

    CAS  Google Scholar 

  • Stotko CM (2009) Laser sintering: layer by layer. Nat Photonics 3:265–266

    CAS  Google Scholar 

  • St-Pierre JP, Pilliar RM, Grynpas MD, Kandel RA (2010) Calcification of cartilage formed in vitro on calcium polyphosphate bone substitutes is regulated by inorganic polyphosphate. Acta Biomater 6:3302–3309

    CAS  PubMed  Google Scholar 

  • Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW (2003) Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24:3115–3123

    CAS  PubMed  Google Scholar 

  • Thomas GP, Baker SU, Eisman JA, Gardiner EM (2001) Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol 170:451–460

    CAS  PubMed  Google Scholar 

  • Tuzlakoglu K, Pashkuleva I, Rodrigues MR, Gomes VL, Müller R, Reis RL (2010) A new route to produce starch-based fiber mesh scaffolds by wet spinning and the improvement in cell attachment and proliferation by tailoring their surface properties. J Biomed Mater Res A 92:369–377

    CAS  PubMed  Google Scholar 

  • Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, Kirkpatrick JC (2004) Growth of human cells on a nonwoven silk fibroin net: a potential for use in tissue engineering. Biomaterials 25:1069–1075

    CAS  PubMed  Google Scholar 

  • Utela B, Storti D, Anderson R, Ganter M (2008) A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 10:96–104

    Google Scholar 

  • Vincent C, Kogawa M, Findlay DM, Atkins GJ (2009) The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions. J Bone Miner Metab 27:114–119

    CAS  PubMed  Google Scholar 

  • Walsh NC, Cahill M, Carninci P, Kawai J, Okazaki Y, Hayashizaki Y, Hume DA, Cassady AI (2003) Multiple tissue-specific promoters control expression of the murine tartrate-resistant acid phosphatase gene. Gene 307:111–123

    CAS  PubMed  Google Scholar 

  • Wang XH, Schloßmacher U, Wiens M, Batel R, Schröder HC, Müller WEG (2012a) Silicateins, silicatein interactors, and cellular interplay in sponge skeletogenesis: formation of the glass fiber-like spicules. FEBS J 279:1721–1736

    CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Wang K, Kaandorp JA, Müller WEG (2012b) Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol-gels to solid 3D silica composite structures. Soft Matter 8:9501–9518

    CAS  Google Scholar 

  • Wang XH, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012c) Biosilica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578

    CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Diehl-Seifert B, Kropf K, Schloßmacher U, Wiens M, Müller WEG (2013a) Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro. J Tissue Eng Regen Med 7:767–776

    Google Scholar 

  • Wang XH, Schröder HC, Feng QL, Draenert F, Müller WEG (2013b) The deep-sea natural products, biogenic polyphosphate (bio-polyP) and biogenic silica (biosilica) as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 11:718–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT (2001) Hypoxia regulates osteoblast gene expression. J Surg Res 99:147–155

    CAS  PubMed  Google Scholar 

  • Wiens M, Bausen M, Natalio F, Link T, Schlossmacher U, Müller WEG (2009) The role of the silicatein-α interactor silintaphin-1 in biomimetic biomineralization. Biomaterials 30:1648–1656

    CAS  PubMed  Google Scholar 

  • Wiens M, Wang X, Natalio F, Schröder HC, Schloßmacher U, Wang S, Korzhev M, Geurtsen W, Müller WEG (2010a) Bioinspired fabrication of biosilica-based bone-substitution materials. Adv Eng Mater 12:B438–B450

    Google Scholar 

  • Wiens M, Wang X, Schloßmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WEG (2010b) Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524

    CAS  PubMed  Google Scholar 

  • Wiens M, Wang X, Schröder HC, Kolb U, Schloßmacher U, Ushijima H, Müller WEG (2010c) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials 31:7716–7725

    CAS  PubMed  Google Scholar 

  • Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F (2004) RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 1704:49–57

    CAS  PubMed  Google Scholar 

  • Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials – approaches towards 3D tissue printing. J Funct Biomater 2:119–154

    Google Scholar 

  • Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78:1–11

    PubMed  Google Scholar 

  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652

    CAS  PubMed  Google Scholar 

  • Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627

    PubMed  Google Scholar 

  • Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J (2012) Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 8:341–349

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

W.E.G.M. is a holder of an ERC Advanced Investigator Grant (no. 268476 BIOSILICA) as well as of an ERC proof-of-concept grant (no. 324564; Silica-based nanobiomedical approaches for treatment of bone diseases). This work was supported by grants from the European Commission (FP7-NMP-2013-EU-CHINA project no. 604036—Bio-Scaffolds; large-scale integrating project, project no. 311848—BlueGenics; project no. FP7-KBBE-2010-4-266033—SPECIAL; project no. PIRSES-GA-2009-246987—European-Chinese Research Staff Exchange Cluster MarBioTec*EU-CN*), the German Bundesministerium für Bildung und Forschung—International Bureau (no. CHN 09/1AP—German-Chinese Joint Lab on Bio-Nano-Composites), the Public Welfare Project of Ministry of Land and Resources of the People’s Republic of China (grant no. 201011005–06), and the International S & T Cooperation Program of China (grant no. 2008DFA00980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E. G. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W.E.G., Schröder, H.C., Shen, Z., Feng, Q., Wang, X. (2013). Inorganic Polymers: Morphogenic Inorganic Biopolymers for Rapid Prototyping Chain. In: Müller, W., Wang, X., Schröder, H. (eds) Biomedical Inorganic Polymers. Progress in Molecular and Subcellular Biology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41004-8_9

Download citation

Publish with us

Policies and ethics