Skip to main content

Inorganic Polyphosphates: Biologically Active Biopolymers for Biomedical Applications

  • Chapter
  • First Online:
Biomedical Inorganic Polymers

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 54))

Abstract

Inorganic polyphosphate (polyP) is a widely occurring but only rarely investigated biopolymer which exists in both prokaryotic and eukaryotic organisms. Only in the last few years, this polymer has been identified to cause morphogenetic activity on cells involved in human bone formation. The calcium complex of polyP was found to display a dual effect on bone-forming osteoblasts and bone-resorbing osteoclasts. Exposure of these cells to polyP (Ca2+ complex) elicits the expression of cytokines that promote the mineralization process by osteoblasts and suppress the differentiation of osteoclast precursor cells to the functionally active mature osteoclasts dissolving bone minerals. The effect of polyP on bone formation is associated with an increased release of the bone morphogenetic protein 2 (BMP-2), a key mediator that activates the anabolic processes leading to bone formation. In addition, polyP has been shown to act as a hemostatic regulator that displays various effects on blood coagulation and fibrinolysis and might play an important role in platelet-dependent proinflammatory and procoagulant disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams SA (1998) Bone turnover during lactation-can calcium supplementation make a difference? J Clin Endocrinol Metab 83:1056–1058

    CAS  PubMed  Google Scholar 

  • Agholme F, Li X, Isaksson H, Ke HZ, Aspenberg P (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res 25:2412–2418

    CAS  PubMed  Google Scholar 

  • Ahn K, Kornberg A (1990) Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265:11734–11739

    CAS  PubMed  Google Scholar 

  • Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72

    CAS  PubMed  Google Scholar 

  • Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    PubMed  Google Scholar 

  • Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millán JL (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164:841–847

    CAS  PubMed  Google Scholar 

  • Banovac K, Koren E (2000) Triiodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells. Calcif Tissue Int 67:460–465

    CAS  PubMed  Google Scholar 

  • Beck GR, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357

    CAS  PubMed  Google Scholar 

  • Bellido T, Plotkin LI (2011) Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone 49:50–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolander ME, Young MF, Fisher LW, Yamada Y, Termine JD (1988) Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor (Ovomucoid). Proc Natl Acad Sci USA 85:2919–2923

    CAS  PubMed  Google Scholar 

  • Boskey A, Gadaleta S, Gundberg C, Doty S, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    CAS  PubMed  Google Scholar 

  • Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    CAS  PubMed  Google Scholar 

  • Bruedigam C, Eijken M, Koedam M, van de Peppel J, Drabek K, Chiba H, van Leeuwen JP (2010) A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone. Stem Cells 28:916–927

    CAS  PubMed  Google Scholar 

  • Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    CAS  PubMed  Google Scholar 

  • Caen J, Wu Q (2010) Hageman factor, platelets and polyphosphates: early history and recent connection. J Thromb Haemost 8:1670–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerri PS, Boabaid F, Katchburian E (2003) Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. J Periodontol Res 38:223–226

    CAS  Google Scholar 

  • Chang W, Tu C, Chen TH, Komuves L, Oda Y, Pratt SA, Miller S, Shoback D (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140:5883–5893

    CAS  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    CAS  PubMed  Google Scholar 

  • Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134:277–286

    CAS  PubMed  Google Scholar 

  • Choi HJ, Park YR, Nepal M, Choi BY, Cho NP, Choi SH, Heo SR, Kim HS, Yang MS, Soh Y (2010) Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW 264.7 cells via JNK and NF-κB signaling pathways. Eur J Pharmacol 636:28–35

    CAS  PubMed  Google Scholar 

  • Choi SH, Smith SA, Morrissey JH (2011) Polyphosphate is a cofactor for the activation of factor XI by thrombin. Blood 118:6963–6970

    CAS  PubMed  Google Scholar 

  • Cyboron GW, Wuthier RE (1981) Purification and initial characterization of intrinsic membrane-bound alkaline phosphatase from chicken epiphyseal cartilage. J Biol Chem 156:7262–7268

    Google Scholar 

  • Dvorak MM, Riccardi D (2004) Ca2+ as an extracellular signal in bone. Cell Calcium 35:249–255

    CAS  PubMed  Google Scholar 

  • Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27:1–11

    PubMed  Google Scholar 

  • Filgueira L (2004) Fluorescence-based staining for tartrate-resistant acidic phosphatase (TRAP) in osteoclasts combined with other fluorescent dyes and protocols. J Histochem Cytochem 52:411–414

    CAS  PubMed  Google Scholar 

  • Fleisch H (1999) From polyphosphates to bisphosphonates and their role in bone and calcium metabolism. In: Schröder HC, Müller WEG (eds) Inorganic polyphosphates biochemistry, biology, biotechnology. Springer, Heidelberg, pp 197–215

    Google Scholar 

  • Fleisch H, Neuman WF (1961) Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Am J Physiol 200:1296–1300

    CAS  Google Scholar 

  • Fleisch H, Russel R, Straumann F (1966a) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903

    CAS  PubMed  Google Scholar 

  • Fleisch H, Straumann F, Schenk R, Bisaz S, Allgöwer M (1966b) Effect of condensed phosphates on calcification of chick embryo femurs in tissue culture. Am J Physiol 211:821–825

    CAS  PubMed  Google Scholar 

  • Garimella R, Tague SE, Zhang J, Belibi F, Nahar N, Sun Ben H, Insogna K, Wang J, Anderson HC (2008) Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling. J Histochem Cytochem 56:569–577

    CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109(Suppl):S81–S96

    CAS  PubMed  Google Scholar 

  • Graff RD, Picher M, Lee GM (2003) Extracellular nucleotides, cartilage stress, and calcium crystal formation. Curr Opin Rheumatol 15:315–320

    CAS  PubMed  Google Scholar 

  • Griffith EJ (1995) Phosphate fibers, Topics in applied chemistry. Springer, Berlin

    Google Scholar 

  • Hacchou Y, Uematsu T, Ueda O, Usui Y, Uematsu S, Takahashi M, Uchihashi T, Kawazoe Y, Shiba T, Kurihara S, Yamaoka M, Furusawa K (2007) Inorganic polyphosphate: a possible stimulant of bone formation. J Dent Res 86:893–897

    CAS  PubMed  Google Scholar 

  • Han KY, Hong BS, Yoon YJ, Yoon CM, Kim YK, Kwon YG, Gho YS (2007) Polyphosphate blocks tumour metastasis via anti-angiogenic activity. Biochem J 406:49–55

    CAS  PubMed  Google Scholar 

  • Hausser HJ, Brenner RE (2005) Phenotypic instability of SaOS-2 cells in long-term culture. Biochem Biophys Res Commun 333:216–222

    CAS  PubMed  Google Scholar 

  • Hayase Y, Muguruma Y, Lee MY (1997) Osteoclast development from hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to macrophage commitment. Exp Hematol 25:19–25

    CAS  PubMed  Google Scholar 

  • Henthorn PS (1996) Alkaline phosphatase. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 1st edn. Academic, San Diego, CA, pp 197–206

    Google Scholar 

  • Hernandez-Ruiz L, González-García I, Castro C, Brieva JA, Ruiz FA (2006) Inorganic polyphosphate and specific induction of apoptosis in human plasma cells. Haematologica 91:1180–1186

    CAS  PubMed  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    CAS  PubMed  Google Scholar 

  • Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A RUNX2/MIR-3960/MIR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339

    CAS  PubMed  Google Scholar 

  • Hui M, Tenenbaum HC (1998) New face of an old enzyme: alkaline phosphatases may contribute to human tissue aging by inducing tissue hardening and calcification. Anat Rec 253:91–94

    CAS  PubMed  Google Scholar 

  • Imsiecke G, Münkner J, Lorenz B, Bachinski N, Müller WEG, Schröder HC (1996) Inorganic polyphosphates in the developing freshwater sponge Ephydatia muelleri: effect of stress by polluted waters. Environ Toxicol Chem 15:1329–1334

    CAS  Google Scholar 

  • Jabbar S, Drury J, Fordham JN, Datta HK, Francis RM, Tuck SP (2011) Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J Clin Pathol 64:354–357

    CAS  PubMed  Google Scholar 

  • Jang WG, Kim EJ, Kim DK, Ryoo HM, Lee KB, Kim SH, Choi HS, Koh JT (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem 287:905–915

    CAS  PubMed  Google Scholar 

  • Jimenez-Nunez MD, Moreno-Sanchez D, Hernandez-Ruiz L, Benitez-Rondan A, Ramos-Amaya A, Rodriguez-Bayona B, Medina F, Brieva JA, Ruiz FA (2012) Myeloma cells contain high inorganic polyphosphate levels that are associated with nucleolar transcription. Haematologica 97:1264–1271

    CAS  PubMed  Google Scholar 

  • Johnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S, Goding JW, Sano K, Millan JL, Terkeltaub R (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279:R1365–R1377

    CAS  PubMed  Google Scholar 

  • Kanis JA (1994) WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4:368–381

    CAS  PubMed  Google Scholar 

  • Kasuyama K, Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Morita M (2012) Effects of topical application of inorganic polyphosphate on tissue remodeling in rat inflamed gingiva. J Periodontal Res 47:159–164

    CAS  PubMed  Google Scholar 

  • Katchman BJ, Smith HE (1958) Diffusion of synthetic and natural polyphosphates. Arch Biochem Biophys 76:396–402

    Google Scholar 

  • Kawazoe Y, Shiba T, Nakamura R, Mizuno A, Tsutsumi K, Uematsu T, Yamaoka M, Shindoh M, Kohgo T (2004) Induction of calcification in MC3T3-E1 cells by inorganic polyphosphate. J Dent Res 83:613–618

    CAS  PubMed  Google Scholar 

  • Kawazoe Y, Katoh S, Onodera Y, Kohgo T, Shindoh M, Shiba T (2008) Activation of the FGF signaling pathway and subsequent induction of mesenchymal stem cell differentiation by inorganic polyphosphate. Int J Biol Sci 4:37–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    CAS  PubMed  Google Scholar 

  • Kelly SE, Di Benedetto A, Greco A, Howard CM, Sollars VE, Primerano DA, Valluri JV, Claudio PP (2010) Rapid selection and proliferation of CD133(+) cells from cancer cell lines: chemotherapeutic implications. PLoS One 5:e10035

    PubMed  PubMed Central  Google Scholar 

  • Kornberg A (1999) Inorganic polyphosphate: a molecule of many functions. In: Schröder HC, Müller WEG (eds) Inorganic polyphosphates: biochemistry, biology, biotechnology, vol 23, Progress in molecular subcellular biology. Springer, Berlin, pp 1–26

    Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    CAS  PubMed  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, New York, NY

    Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates. Wiley, Chichester, pp 1–277

    Google Scholar 

  • Kulakovskaya TV, Vagabov VM, Kulaev IS (2012) Inorganic polyphosphate in industry, agriculture and medicine: modern state and outlook. Process Biochem 47:1–10

    CAS  Google Scholar 

  • Kumble KD, Kornberg A (1995) Inorganic polyphosphate in mammalian cells and tissues. J Biol Chem 270:5818–5822

    CAS  PubMed  Google Scholar 

  • Laitinen M, Jortikka L, Halttunen T, Böhling T, Marttinen A, Lindholm TS (1997) Soluble factors from human Saos-2 osteosarcoma cells induce ectopic bone formation and osteoblastic differentiation of cultured mesenchymal cells. J Musculoskelet Res 1:21–32

    Google Scholar 

  • Landis WJ, Hodgens KJ, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117:24–35

    CAS  PubMed  Google Scholar 

  • Lane NE, Yao W (2009) Developments in the scientific understanding of osteoporosis. Arthritis Res Ther 11:228

    PubMed  PubMed Central  Google Scholar 

  • Lee ZH, Kim HH (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun 305:211–214

    CAS  PubMed  Google Scholar 

  • Lee J, Park JB, Herr Y, Chung JH, Kwon YH (2008) The effect of polyphosphate on exophytic bone formation. J Korean Acad Periodontol 38:59–66

    Google Scholar 

  • Lee BH, Kim MC, Choi SH, Lee YK (2009) Amorphous calcium polyphosphate bone regenerative materials based on calcium phosphate glass. Key Eng Mater 396–398:209–212

    Google Scholar 

  • Lee SJ, Kang SW, Do HJ, Han I, Shin DA, Kim JH, Lee SH (2010) Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 31:5652–5659

    CAS  PubMed  Google Scholar 

  • Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Miner Res 13:803–812

    CAS  PubMed  Google Scholar 

  • Lorch IJ (1949) Alkaline phosphatase and the mechanism of ossification. J Bone Joint Surg 31:94–99

    Google Scholar 

  • Lorenz B, Schröder HC (1999) Methods for investigation of inorganic polyphosphates and polyphosphate-metabolizing enzymes. In: Schröder HC, Müller WEG (eds) Inorganic polyphosphates—biochemistry, biology, biotechnology, Prog Mol Subcell Biol 23: 217–239

    Google Scholar 

  • Lorenz B, Schröder HC (2001) Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 1547:254–261

    CAS  PubMed  Google Scholar 

  • Lorenz B, Marmé S, Müller WEG, Unger K, Schröder HC (1994a) Preparation and use of polyphosphate-modified zirconia for purification of nucleic acids and proteins. Anal Biochem 216:118–126

    CAS  PubMed  Google Scholar 

  • Lorenz B, Müller WEG, Kulaev IS, Schröder HC (1994b) Purification and characterization of an exopolyphosphatase activity from Saccharomyces cerevisiae. J Biol Chem 269:22198–22204

    CAS  PubMed  Google Scholar 

  • Lorenz B, Batel R, Bachinski N, Müller WEG, Schröder HC (1995) Purification and characterization of two exopolyphosphatases from the marine sponge Tethya lyncurium. Biochim Biophys Acta 1245:17–28

    PubMed  Google Scholar 

  • Lorenz B, Leuck J, Köhl D, Müller WEG, Schröder HC (1997a) Anti-HIV-1 activity of inorganic polyphosphates. J Acquir Immune Defic Syndr Hum Retrovirol 14:110–118

    CAS  PubMed  Google Scholar 

  • Lorenz B, Münkner J, Oliveira MP, Kuusksalu A, Leitão JM, Müller WEG, Schröder HC (1997b) Changes in metabolism of inorganic polyphosphate in rat tissues and human cells during development and apoptosis. Biochim Biophys Acta 1335:51–60

    CAS  PubMed  Google Scholar 

  • Lorenz B, Münkner J, Oliveira MP, Leitão JM, Müller WEG, Schröder HC (1997c) A novel method for determination of inorganic polyphosphates using the fluorescent dye fura-2. Anal Biochem 246:176–184

    CAS  PubMed  Google Scholar 

  • Lymperi S, Ersek A, Ferraro F, Dazzi F, Horwood NJ (2011) Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117:1540–1549

    CAS  PubMed  Google Scholar 

  • Maekawa K, Yoshida Y, Mine A, Fujisawa T, Van Meerbeek B, Suzuki K, Kuboki T (2007) Chemical interaction of polyphosphoric acid with titanium and its effect on human bone marrow derived mesenchymal stem cell behavior. J Biomed Mater Res A 82:195–200

    PubMed  Google Scholar 

  • Maekawa K, Yoshida Y, Mine A, van Meerbeek B, Suzuki K, Kuboki T (2008) Effect of polyphosphoric acid pre-treatment of titanium on attachment, proliferation, and differentiation of osteoblast-like cells (MC3T3-E1). Clin Oral Implants Res 19:320–325

    PubMed  Google Scholar 

  • Maekawa K, Shimono K, Oshima M, Yoshida Y, Van Meerbeek B, Suzuki K, Kuboki T (2009) Polyphosphoric acid treatment promotes bone regeneration around titanium implants. J Oral Rehabil 36:362–367

    CAS  PubMed  Google Scholar 

  • Millan JL (2006) Alkaline phosphatases. Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan EF, Barnes GL, Einhorn TA (2008) The bone organ system: form and function. In: Marcus R, Feldman D, Nelson D, Rosen CJ (eds) Osteoporosis, 3rd edn. Elsevier Academic, Boston, MA, pp 3–25

    Google Scholar 

  • Morimoto D, Tomita T, Kuroda S, Higuchi C, Kato S, Shiba T, Nakagami H, Morishita R, Yoshikawa H (2010) Inorganic polyphosphate differentiates human mesenchymal stem cells into osteoblastic cells. J Bone Miner Metab 28:418–423

    CAS  PubMed  Google Scholar 

  • Morita K, Doi K, Kubo T, Takeshita R, Kato S, Shiba T, Akagawa Y (2010) Enhanced initial bone regeneration with inorganic polyphosphate-adsorbed hydroxyapatite. Acta Biomater 6:2808–2815

    CAS  PubMed  Google Scholar 

  • Morrissey JH (2012) Polyphosphate: a link between platelets, coagulation and inflammation. Int J Hematol 95:346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    CAS  Google Scholar 

  • Müller F, Renné T (2011) Platelet polyphosphates: the nexus of primary and secondary hemostasis. Scand J Clin Lab Invest 71:82–86

    PubMed  Google Scholar 

  • Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renné T (2009a) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139:1143–1156

    PubMed  PubMed Central  Google Scholar 

  • Müller WEG, Wang XH, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schloßmacher U, Wiens M (2009b) Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol 83:397–413

    PubMed  PubMed Central  Google Scholar 

  • Müller WEG, Wang XH, Diehl-Seifert B, Kropf K, Schloßmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011) Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7:2661–2671

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Guo YW, Schröder HC (2012) Potentiation of the cytotoxic activity of copper by polyphosphate on biofilm-producing bacteria: a bioinspired approach. Mar Drugs 10:2369–2387

    PubMed  PubMed Central  Google Scholar 

  • Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang XH (2013a) Silicateins: a paradigm shift in bioinorganic chemistry. Enzymatic synthesis of inorganic polymeric silica. Chem Eur J 19:5790–5804

    PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Schlossmacher U, Grebenjuk VA, Ushijima H, Wang XH (2013b) Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 34:8671–8680

    PubMed  Google Scholar 

  • Mutch NJ, Engel R, Uitte de Willige S, Philippou H, Ariëns RA (2010) Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood 115:3980–3988

    CAS  PubMed  Google Scholar 

  • Nam HK, Liu J, Li Y, Kragor A, Hatch NE (2011) Ectonucleotide pyrophosphatase/ phosphodiesterase-1 (ENPP1) protein regulates osteoblast differentiation. J Biol Chem 286:39059–39071

    CAS  PubMed  Google Scholar 

  • Nickel J, Dreyer MK, Kirsch T, Sebald W (2001) The crystal structure of the BMP-2–BMPR-IA complex and the generation of BMP-2 antagonists. J Bone Joint Surg Am 83-A(Suppl 1):S7–S14

    PubMed  Google Scholar 

  • Oldberg A, Franzen A, Heinegard D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823

    CAS  PubMed  Google Scholar 

  • Oldberg A, Franzen A, Heinegard D (1988) The primary structure of a cell binding bone sialoprotein. J Biol Chem 263:19430–19432

    CAS  PubMed  Google Scholar 

  • Omelon SJ, Grynpas MD (2008) Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 108:4694–4715

    CAS  PubMed  Google Scholar 

  • Omelon S, Georgiou J, Henneman ZJ, Wise LM, Sukhu B, Hunt T, Wynnyckyj C, Holmyard D, Ryszard B, Grynpas MD (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS One 4:e5634

    PubMed  PubMed Central  Google Scholar 

  • Ominsky MS, Stolina M, Li X, Corbin TJ, Asuncion FJ, Barrero M, Niu QT, Dwyer D, Adamu S, Warmington KS, Grisanti M, Tan HL, Ke HZ, Simonet WS, Kostenuik PJ (2009) One year of transgenic overexpression of osteoprotegerin in rats suppressed bone resorption and increased vertebral bone volume, density, and strength. J Bone Miner Res 24:1234–1246

    CAS  PubMed  Google Scholar 

  • Omoto M, Imai T, Seki K, Nomura R, Otahara Y (1997) The effect on the bones of condensed phosphate when used as food additives: its importance in relation to preventive medicine. Environ Health Prev Med 2:105–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orimo H, Shimada T (2008) The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem 282:101–108

    Google Scholar 

  • Palmer G, Bonjour JP, Caverzasio J (1997) Expression of a newly identified phosphate transporter/retrovirus receptor in human SaOS-2 osteoblast-Like cells and its regulation by insulin-like growth factor I. Endocrinology 138:5202–5209

    CAS  PubMed  Google Scholar 

  • Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gómez-García MR, Abramov AY (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 285:9420–9428

    CAS  PubMed  Google Scholar 

  • Price CP (1993) Multiple forms of human serum alkaline phosphatase: detection and quantitation. Ann Clin Biochem 30:355–372

    PubMed  Google Scholar 

  • Quinn JM, Gillespie MT (2005) Modulation of osteoclast formation. Biochem Biophys Res Commun 328:739–745

    CAS  PubMed  Google Scholar 

  • Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos I, Gomes F, Koeller CM, Saito K, Heise N, Masuda H, Docampo R, de Souza W, Machado EA, Miranda K (2011) Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl. PLoS One 6:e27276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao NN, Gómez-Garcıa MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647

    CAS  PubMed  Google Scholar 

  • Register TC, Wuthier RE (1985) Effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle-enriched fractions and by hydroxyapatite. Bone 6:307–312

    CAS  PubMed  Google Scholar 

  • Rezende LA, Ciancaglini P, Pizauro JM, Leone FA (1998) Inorganic pyrophosphate-phosphohydrolytic activity associated with rat osseous plate alkaline phosphatase. Cell Mol Biol (Noisy-le-grand) 44:293–302

    CAS  Google Scholar 

  • Robey PG (2002) Bone matrix proteoglycans and glycoproteins. In: Bilezikan JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic, San Diego, CA, p 225

    Google Scholar 

  • Robins SP, Bilezikian JP, Seibel MJ (2006) Dynamics of bone and cartilage metabolism: principals and clinical applications. Academic, San Diego, CA

    Google Scholar 

  • Rohde M, Mayer H (2007) Exocytotic process as a novel model for mineralization by osteoblasts in vitro and in vivo determined by electron microscopic analysis. Calcif Tissue Int 80:323–336

    CAS  PubMed  Google Scholar 

  • Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 92:7632–7636

    CAS  PubMed  Google Scholar 

  • Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257

    CAS  PubMed  Google Scholar 

  • Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018

    CAS  PubMed  Google Scholar 

  • Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F, Russo A, Ortega C, Porta C, Galluzzo S, Armento G, La Verde N, Caroti C, Treilleux I, Ruggiero A, Perrone G, Addeo R, Clezardin P, Muda AO, Tonini G (2011) Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS One 6:e19234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder HC, Müller WEG (eds) (1999) Inorganic polyphosphates: biochemistry. biology. biotechnology, Prog Mol Subcell Biol, vol 23. Springer, Berlin

    Google Scholar 

  • Schröder HC, Lorenz B, Kurz L, Müller WEG (1999) Inorganic polyP in eukaryotes: enzymes, metabolism and function. In: Schröder HC, Müller WEG (eds) Inorganic polyphosphates—biochemistry, biology, biotechnology, Prog Mol Subcell Biol 23: 45–81

    Google Scholar 

  • Schröder HC, Kurz L, Müller WEG, Lorenz B (2000) Polyphosphate in bone. Biochemistry (Moscow) 65:296–303

    Google Scholar 

  • Schröder HC, Borejko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (Silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res B Appl Biomater 75B:387–392

    Google Scholar 

  • Schröder HC, Wiens M, Wang XH, Schloßmacher U, Müller WEG (2011) In: Müller WEG (ed) Molecular biomineralization, Prog Mol Subcell Biol 52: 283–312

    Google Scholar 

  • Schröder HC, Wang XH, Manfrin A, Yu SH, Grebenjuk VA, Korzhev M, Wiens M, Schloßmacher U, Müller WEG (2012a) Silicatein: acquisition of structure-guiding and structure-forming properties during maturation from the pro-silicatein to the silicatein form. J Biol Chem 287:22196–22205

    PubMed  Google Scholar 

  • Schröder HC, Wang XH, Wiens M, Diehl-Seifert B, Kropf K, Schloßmacher U, Müller WEG (2012b) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206

    PubMed  Google Scholar 

  • Schröder HC, Wiens M, Schloßmacher U, Brandt D, Müller WEG (2012c) Silicatein-mediated polycondensation of orthosilicic acid: modeling of a catalytic mechanism involving ring formation. Silicon 4:33–38

    Google Scholar 

  • Seidlmayer LK, Gomez-Garcia MR, Blatter LA, Pavlov E, Dedkova EN (2012) Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. J Gen Physiol 139:321–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahidi F, Rubin LJ, Diosady LL, Kassam N, Fong JC, Li S, Wood DF (1986) Effect of sequestering agents on lipid oxidation in cooked meats. Food Chem 21:145–152

    CAS  Google Scholar 

  • Shiba T, Nishimura D, Kawazoe Y, Onodera Y, Tsutsumi K, Nakamura R, Ohshiro M (2003) Modulation of mitogenic activity of fibroblast growth factors by inorganic polyphosphate. J Biol Chem 278:26788–26792

    CAS  PubMed  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    CAS  PubMed  Google Scholar 

  • Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) ß-Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009

    CAS  PubMed  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    CAS  PubMed  Google Scholar 

  • Sinha KM, Yasuda H, Coombes MM, Dent SYR, de Crombrugghe B (2010) Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO J 29:68–79

    CAS  PubMed  Google Scholar 

  • Smith SA, Morrissey JH (2008) Polyphosphate as a general procoagulant agent. J Thromb Haemost 6:1750–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 103:903–908

    CAS  PubMed  Google Scholar 

  • Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, Morrissey JH (2010) Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 116:4353–4359

    CAS  PubMed  Google Scholar 

  • Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    CAS  PubMed  Google Scholar 

  • Sperow JW, Moe OA, Ridlington JW, Butler LG (1973) Yeast inorganic pyrophosphatase. VI. Studies on specificity and mechanism. J Biol Chem 248:2062–2065

    CAS  PubMed  Google Scholar 

  • St-Pierre JP, Wang Q, Li SQ, Pilliar RM, Kandel RA (2012) Inorganic polyphosphate stimulates cartilage tissue formation. Tissue Eng Part A 18:1282–1292

    CAS  PubMed  Google Scholar 

  • Sun L, Blair HC, Peng Y, Zaidi N, Adebanjo OA, Wu XB, Wu XY, Iqbal J, Epstein S, Abe E, Moong BS, Zaidi M (2005) Calcineurin regulates bone formation by the osteoblast. Proc Natl Acad Sci USA 102:17130–17135

    CAS  PubMed  Google Scholar 

  • Sung B, Murakami A, Oyajobi BO, Aggarwal BB (2009) Zerumbone abolishes RANKL-induced NF-κB activation, inhibits osteoclastogenesis, and suppresses human breast cancer-induced bone loss in athymic nude mice. Cancer Res 69:1477–1484

    CAS  PubMed  Google Scholar 

  • Tammenkoski M, Koivula K, Cusanelli E, Zollo M, Steegborn C, Baykov AA, Lahti R (2008) Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. Biochemistry 47:9707–9713

    CAS  PubMed  Google Scholar 

  • Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435

    CAS  PubMed  Google Scholar 

  • Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142

    CAS  PubMed  Google Scholar 

  • Usui Y, Uematsu T, Uchihashi T, Takahashi M, Takahashi M, Ishizuka M, Doto R, Tanaka H, Komazaki Y, Osawa M, Yamada K, Yamaoka M, Furusawa K (2010) Inorganic polyphosphate induces osteoblastic differentiation. J Dent Res 89:504–509

    CAS  PubMed  Google Scholar 

  • Vaisman DN, McCarthy AD, Cortizo AM (2005) Bone-specific alkaline phosphatase activity is inhibited by bisphosphonates; role of divalent cations. Biol Trace Elem Res 104:131–140

    CAS  PubMed  Google Scholar 

  • Van Wazer JR (ed) (1958) Phosphorus and its compounds: chemistry, vol 1. Interscience Publishers Inc., New York, NY

    Google Scholar 

  • Veldman CM, Markovich D, Schmid C, Murer H (1995) Expression of sodium dependent phosphate (NadPi) transport in Xenopus laevis oocytes induced by mRNA from 1α,25-dihydroxyvitamin D3-treated rat osteoblast-like cells. Pflügers Arch 430:64–67

    CAS  PubMed  Google Scholar 

  • Vincent C, Kogawa M, Findlay DM, Atkins GJ (2009) The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions. J Bone Miner Metab 27:114–119

    CAS  PubMed  Google Scholar 

  • Wang G, Yang J (2010) Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure. Surf Coat Technol 204:1186–1192

    CAS  Google Scholar 

  • Wang Z, Li X, Li Z, Yang L, Sasaki Y, Wang S, Zhou L, Araki S, Mezawa M, Takai H, Ogata Y (2010) Effects of inorganic polyphosphate on bone sialoprotein gene expression. Gene 452:79–86

    CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Diehl-Seifert B, Kropf K, Schloßmacher U, Wiens M, Müller WEG (2012a) Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro. J Tissue Eng Regen Med 7:767–776

    Google Scholar 

  • Wang XH, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012b) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578

    CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Feng QL, Draenert F, Müller WEG (2013) The deep-sea natural products, biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 11:718–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiens M, Wang X, Natalio F, Schröder HC, Schloßmacher U, Wang S, Korzhev M, Geurtsen W, Müller WEG (2010a) Bioinspired fabrication of bio-silica-based bone substitution materials. Adv Eng Mater 12:B438–B450

    Google Scholar 

  • Wiens M, Wang XH, Schloßmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WEG (2010b) Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524

    CAS  PubMed  Google Scholar 

  • Wiens M, Wang XH, Schröder HC, Kolb U, Schloßmacher U, Ushijima H, Müller WEG (2010c) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblastlike cells. Biomaterials 31:7716–7725

    CAS  PubMed  Google Scholar 

  • Williams G, Sallis JD (1982) Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation. Calcif Tissue Int 34:169–177

    CAS  PubMed  Google Scholar 

  • Wood HG, Clark JE (1988) Biological aspects of inorganic polyphosphates. Annu Rev Biochem 57:235–260

    CAS  PubMed  Google Scholar 

  • Wu LNY, Valhmu WB, Lloyd GC, Genge BR, Wuthier RE (1989) Isolation of two glycosylated forms of membrane-bound alkaline phosphatase from avian growth plate cartilage matrix vesicle-enriched microsomes. Bone Miner 7:113–125

    CAS  PubMed  Google Scholar 

  • Wuthier RE, Makjeska RJ, Collins GM (1977) Biosynthesis of matrix vesicles in epiphyseal cartilage. I. In vivo incorporation of 32P orthophosphate into phospholipids of chondrocyte, membrane, and matrix vesicle fractions. Calcif Tissue Res 23:135–139

    CAS  PubMed  Google Scholar 

  • Yuan Q, Kubo T, Doi K, Morita K, Takeshita R, Katoh S, Shiba T, Gong P, Akagawa Y (2009) Effect of combined application of bFGF and inorganic polyphosphate on bioactivities of osteoblasts and initial bone regeneration. Acta Biomater 5:1716–1724

    CAS  PubMed  Google Scholar 

  • Zakharian E, Thyagarajan B, French RJ, Pavlov E, Rohacs T (2009) Inorganic polyphosphate modulates TRPM8 channels. PLoS One 4:e5404

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Han JY, Xi CX, Xie JX, Feng X, Wang CY, Mei L, Xiong WC (2008) HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Miner Res 23:1084–1096

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

W.E.G.M. is a holder of an ERC Advanced Investigator Grant (no. 268476 BIOSILICA) as well as of an ERC Proof-of-Concept grant (no. 324564). This work was supported by grants from the European Commission (large-scale integrating project no. 311848, BlueGenics; project no. FP7-KBBE-2010-4-266033, SPECIAL; project no. PIRSES-GA-2009-246987, European-Chinese Research Staff Exchange Cluster MarBioTec*EU-CN*), the German Bundesministerium für Bildung und Forschung – International Bureau (no. CHN 09/1AP, German-Chinese Joint Lab on Bio-Nano-Composites), the Public Welfare Project of Ministry of Land and Resources of the People’s Republic of China (grant no. 201011005-06), and the International S & T Cooperation Program of China (grant no. 2008DFA00980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E. G. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X., Schröder, H.C., Schloßmacher, U., Müller, W.E.G. (2013). Inorganic Polyphosphates: Biologically Active Biopolymers for Biomedical Applications. In: Müller, W., Wang, X., Schröder, H. (eds) Biomedical Inorganic Polymers. Progress in Molecular and Subcellular Biology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41004-8_10

Download citation

Publish with us

Policies and ethics