Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

  • 6140 Accesses

Abstract

A new model – two-layer vector perceptron – is offered. Though, comparing with a single-layer perceptron, its operation needs slightly more (by 5%) calculations and more effective computer memory, it excels in a much lower error rate (four orders of magnitude as lower).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu, F.Y.: The Potts model. Review of Modern Physics 54, 235–268 (1982)

    Article  Google Scholar 

  2. Kanter, I.: Potts-glass models of neural networks. Physical Review A 37(7), 2739–2742 (1988)

    Article  MathSciNet  Google Scholar 

  3. Kryzhanovsky, B., Mikaelyan, A.: Doklady Mathematics. On the Recognition Ability of a Neural Network on Neurons with Parametric Transformation of Frequencies 65(2), 286–288 (2002)

    Google Scholar 

  4. Austin, J., Turner, A., Lees, K.: Chemical Structure Matching Using Correlation Matrix Memories. In: International Conference on Artificial Neural Networks, IEE Conference Publication 470, Edinburgh, UK, September 7-10. published by IEE, London (1999)

    Google Scholar 

  5. Kryzhanovsky, V.M.: Ph.D. Thesis, Research into Binary-Synaptic-Coefficient Vector Neural Nets for Data Processing and Decision Making Problems, System Research Institute of the Russian Academy of Sciences (2010)

    Google Scholar 

  6. Kryzhanovskiy, V., Zhelavskaya, I., Fonarev, A.: Vector Perceptron Learning Algorithm Using Linear Programming. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 197–204. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Podolak, I.T., Biel, S., Bobrowski, M.: Hierarchical classifier. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 591–598. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Podolak, I.T.: Hierarchical classifier with overlapping class groups. Expert Systems with Applications 34(1), 673–682 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kryzhanovsky, V., Zhelavskaya, I., Clares Tomas, J.A. (2013). Two-Layer Vector Perceptron. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics