Skip to main content

Functional Imaging in Cardiac Tumors

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Primary cardiac neoplasms are rare and identified in 0.05–0.15 % of cases in large autopsy [1, 2] and echocardiography series [3]. Primary cardiac tumors may be classified as benign or malignant. The most common benign cardiac tumors include myxoma, rhabdomyoma, fibroma, and lipoma, whereas the most common malignant primary tumors are sarcomas (angiosarcoma, fibrosarcoma, undifferentiated sarcoma, rhabdomyosarcoma) and lymphoma [4, 5]. The majority, about three-fourth, of these tumors are benign [1, 2]. Secondary involvement of the heart or pericardium through local invasion or metastatic spread of malignant tumors is at least 20 times more common, identified in about 1.2 % of autopsy cases [1, 2] and 8 % of cancer victims [6]. Thoracic tumors (e.g., lung, breast, and esophagus) commonly invade the pericardium and heart. Other tumors that tend to metastasize to the heart include melanoma, soft tissue sarcomas, and gastric, pancreatic, thyroid, renal, and hepatocellular carcinomas [2, 6]. Cardiac involvement in lymphoma and leukemia is also common [2, 6]. When analyzed by the frequency according to the histologic type of the primary tumor, melanoma is the malignancy that more often metastasizes to the heart (46 % in autopsy series), followed by germ cell tumors (38 %), leukemia, and lymphoma [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

CT:

Computed tomography

DWI:

Diffusion weighted imaging

ECG:

Electrocardiography

18F:

18Fluorine

18F-FDG:

Fluorodeoxyglucose

123I-MIBG:

123I-metaiodobenzylguanidine

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

RSE:

Maximum relative signal enhancement

SPIR:

Spectral presaturation by inversion recovery

SUVmax :

Standard uptake value

TSE:

Turbo spin echo

References

  1. Reynen K. Frequency of primary tumors of the heart. Am J Cardiol. 1996;77:107.

    Article  CAS  PubMed  Google Scholar 

  2. Lam KY, et al. Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Arch Pathol Lab Med. 1993;117:1027–31.

    CAS  PubMed  Google Scholar 

  3. Sutsch G, et al. Heart tumors: incidence, distribution, diagnosis. Exemplified by 20,305 echocardiographies. Schweiz Med Wochenschr. 1991;121:621–9.

    CAS  PubMed  Google Scholar 

  4. Restrepo CS, et al. CT and MR imaging findings of benign cardiac tumors. Curr Probl Diagn Radiol. 2005;34:12–21.

    Article  PubMed  Google Scholar 

  5. Restrepo CS, et al. CT and MR imaging findings of malignant cardiac tumors. Curr Probl Diagn Radiol. 2005;34:1–11.

    Article  PubMed  Google Scholar 

  6. Silvestri F, et al. Metastases of the heart and pericardium. G Ital Cardiol. 1997;27:1252–5.

    CAS  PubMed  Google Scholar 

  7. Roberts WC. Primary and secondary neoplasms of the heart. Am J Cardiol. 1997;80:671–82.

    Article  CAS  PubMed  Google Scholar 

  8. Luna A, et al. Evaluation of cardiac tumors with magnetic resonance imaging. Eur Radiol. 2005;15:1446–55.

    Article  PubMed  Google Scholar 

  9. Araoz PA, et al. CT and MR imaging of benign primary cardiac neoplasms with echocardiographic correlation. Radiographics. 2000;20:1303–19.

    Article  CAS  PubMed  Google Scholar 

  10. Rahbar K, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;53:856–63.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng G, Alavi A. The value of 18F-FDG PET/CT in the assessment of cardiac malignancy remains to be defined. J Nucl Med. 2012;53:1657; author reply 1657–8.

    Article  PubMed  Google Scholar 

  12. Maurer AH, et al. How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics. 2011;31:1287–305.

    Article  PubMed  Google Scholar 

  13. Fukuchi K, et al. Benign variations and incidental abnormalities of myocardial FDG uptake in the fasting state as encountered during routine oncology positron emission tomography studies. Br J Radiol. 2007;80:3–11.

    Article  CAS  PubMed  Google Scholar 

  14. Kuon E, et al. The challenge presented by right atrial myxoma. Herz. 2004;29:702–9.

    Article  PubMed  Google Scholar 

  15. van Beek EJ, et al. CT and MRI of pericardial and cardiac neoplastic disease. Cancer Imaging. 2007;7:19–26.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Grebenc ML, et al. Cardiac myxoma: imaging features in 83 patients. Radiographics. 2002;22:673–89.

    Article  PubMed  Google Scholar 

  17. Pinede L, et al. Clinical presentation of left atrial cardiac myxoma. A series of 112 consecutive cases. Medicine (Baltimore). 2001;80:159–72.

    Article  CAS  Google Scholar 

  18. Kim EY, et al. Multidetector CT and MR imaging of cardiac tumors. Korean J Radiol. 2009;10:164–75.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schoen F. The heart. In: Cotran R, Kumar V, Robbins S, editors. Pathologic basis of disease. Philadelphia: WB Saunders; 1994.

    Google Scholar 

  20. Anvari MS, et al. Histopathologic and clinical characterization of atrial myxoma: a review of 19 cases. Lab Med. 2009;40:596–9.

    Article  Google Scholar 

  21. Shao D, et al. Differentiation of malignant from benign heart and pericardial lesions using positron emission tomography and computed tomography. J Nucl Cardiol. 2011;18:668–77.

    Article  PubMed  Google Scholar 

  22. Meaney JF, et al. CT appearance of lipomatous hypertrophy of the interatrial septum. AJR Am J Roentgenol. 1997;168:1081–4.

    CAS  PubMed  Google Scholar 

  23. Fan CM, et al. Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET. AJR Am J Roentgenol. 2005;184:339–42.

    PubMed  Google Scholar 

  24. Gerard PS, et al. Intermittent FDG uptake in lipomatous hypertrophy of the interatrial septum on serial PET/CT scans. Clin Nucl Med. 2008;33:602–5.

    Article  PubMed  Google Scholar 

  25. Truong MT, et al. Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR Am J Roentgenol. 2004;183:1127–32.

    PubMed  Google Scholar 

  26. Tazelaar HD, et al. Pathology of surgically excised primary cardiac tumors. Mayo Clin Proc. 1992;67:957–65.

    Article  CAS  PubMed  Google Scholar 

  27. Edwards FH, et al. Primary cardiac valve tumors. Ann Thorac Surg. 1991;52:1127–31.

    Article  CAS  PubMed  Google Scholar 

  28. Sun JP, et al. Clinical and echocardiographic characteristics of papillary fibroelastomas: a retrospective and prospective study in 162 patients. Circulation. 2001;103:2687–93.

    Article  CAS  PubMed  Google Scholar 

  29. Gowda RM, et al. Cardiac papillary fibroelastoma: a comprehensive analysis of 725 cases. Am Heart J. 2003;146:404–10.

    Article  PubMed  Google Scholar 

  30. Grinda JM, et al. Cardiac valve papillary fibroelastoma: surgical excision for revealed or potential embolization. J Thorac Cardiovasc Surg. 1999;117:106–10.

    Article  CAS  PubMed  Google Scholar 

  31. Burke A, et al. Tumours of the heart. In: Travis WD, editor. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: IARC; 2004. p. 249–87.

    Google Scholar 

  32. Grebenc ML, et al. Primary cardiac and pericardial neoplasms: radiologic-pathologic correlation. Radiographics. 2000;20:1073–103; quiz 1110–1, 1112.

    Article  CAS  PubMed  Google Scholar 

  33. Freedom RM, et al. Selected aspects of cardiac tumors in infancy and childhood. Pediatr Cardiol. 2000;21:299–316.

    Article  CAS  PubMed  Google Scholar 

  34. Di Liang C, et al. Echocardiographic evaluation of cardiac rhabdomyoma in infants and children. J Clin Ultrasound. 2000;28:381–6.

    Article  PubMed  Google Scholar 

  35. Burke AP, et al. Cardiac fibroma: clinicopathologic correlates and surgical treatment. J Thorac Cardiovasc Surg. 1994;108:862–70.

    CAS  PubMed  Google Scholar 

  36. Lo Muzio L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis. 2008;3:32.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kaminaga T, et al. Role of magnetic resonance imaging for evaluation of tumors in the cardiac region. Eur Radiol. 2003;13:L1–10.

    Article  Google Scholar 

  38. De Cobelli F, et al. Images in cardiovascular medicine. Late enhancement of a left ventricular cardiac fibroma assessed with gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2005;112:e242–3.

    Article  PubMed  Google Scholar 

  39. Jeevanandam V, et al. Surgical management of cardiac pheochromocytoma. Resection versus transplantation. Ann Surg. 1995;221:415–9.

    Article  CAS  PubMed  Google Scholar 

  40. Manabe O, et al. Multimodality evaluation of cardiac paraganglioma. Clin Nucl Med. 2012;37:599–601.

    Article  PubMed  Google Scholar 

  41. Thomas D, et al. Multimodality imaging of an unusual case of cardiac paraganglioma. J Nucl Cardiol. 2009;16:644–7.

    Article  PubMed  Google Scholar 

  42. Maxey TS, et al. Biatrial primary cardiac paraganglioma: a rare finding. Cardiovasc Pathol. 2007;16:179–82.

    Article  PubMed  Google Scholar 

  43. Beroukhim RS, et al. Cardiac paraganglioma in an adolescent. Circulation. 2012;125:e322–4.

    Article  PubMed  Google Scholar 

  44. Hoegerle S, et al. Pheochromocytomas: detection with 18F DOPA whole body PET–initial results. Radiology. 2002;222:507–12.

    Article  PubMed  Google Scholar 

  45. Tomasian A, et al. Cardiovascular magnetic resonance and PET-CT of left atrial paraganglioma. J Cardiovasc Magn Reson. 2010;12:1.

    Article  PubMed  Google Scholar 

  46. Araoz PA, et al. CT and MR imaging of primary cardiac malignancies. Radiographics. 1999;19:1421–34.

    Article  CAS  PubMed  Google Scholar 

  47. Janigan DT, et al. Cardiac angiosarcomas. A review and a case report. Cancer. 1986;57:852–9.

    Article  CAS  PubMed  Google Scholar 

  48. Mader MT, et al. Malignant tumors of the heart and great vessels: MR imaging appearance. Radiographics. 1997;17:145–53.

    Article  CAS  PubMed  Google Scholar 

  49. Freudenberg LS, et al. Diagnosis of a cardiac angiosarcoma by fluorine-18 fluorodeoxyglucose positron emission tomography. Eur Radiol. 2002;12:S158–61.

    PubMed  Google Scholar 

  50. Higashiyama S, et al. Effectiveness of preoperative PET examination of huge angiosarcoma of the heart. Clin Nucl Med. 2009;34:99–102.

    Article  PubMed  Google Scholar 

  51. Hori Y, et al. Angiosarcoma in the right atria demonstrated by fusion images of multislice computed tomography and positron emission tomography using F-18 fluoro-deoxyglucose. Int J Cardiol. 2007;123:e15–7.

    Article  PubMed  Google Scholar 

  52. Nakamura-Horigome M, et al. Successful treatment of primary cardiac angiosarcoma with docetaxel and radiotherapy. Angiology. 2008;59:368–71.

    Article  CAS  PubMed  Google Scholar 

  53. Szucs RA, et al. Magnetic resonance imaging of cardiac rhabdomyosarcoma. Quantifying the response to chemotherapy. Cancer. 1991;67:2066–70.

    Article  CAS  PubMed  Google Scholar 

  54. Satoh M, et al. Primary cardiac rhabdomyosarcoma exhibiting transient and pronounced regression with chemotherapy. Am Heart J. 1990;120:1458–60.

    Article  CAS  PubMed  Google Scholar 

  55. Nia AM, et al. Rare cause for sudden right heart failure. Sci World J. 2010;10:1996–8.

    Article  Google Scholar 

  56. Belohlavek O, et al. Image fusion in cardiology. Nucl Med Rev Cent East Eur. 2005;8:87–9.

    PubMed  Google Scholar 

  57. Pins MR, et al. Epithelioid and spindle-celled leiomyosarcoma of the heart. Report of 2 cases and review of the literature. Arch Pathol Lab Med. 1999;123:782–8.

    CAS  PubMed  Google Scholar 

  58. Okamoto K, et al. Malignant fibrous histiocytoma of the heart: case report and review of 46 cases in the literature. Intern Med. 2001;40:1222–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang M, et al. PET/CT imaging in a case of cardiac liposarcoma. J Nucl Cardiol. 2008;15:473–5.

    Article  PubMed  Google Scholar 

  60. Aga F, et al. A case of primary pericardial mesothelioma detected by 18F-FDG PET/CT. Clin Nucl Med. 2012;37:522–3.

    Article  PubMed  Google Scholar 

  61. Ost P, et al. F-18 fluorodeoxyglucose PET/CT scanning in the diagnostic work-up of a primary pericardial mesothelioma: a case report. J Thorac Imaging. 2008;23:35–8.

    Article  PubMed  Google Scholar 

  62. Gowda RM, Khan IA. Clinical perspectives of primary cardiac lymphoma. Angiology. 2003;54:599–604.

    Article  PubMed  Google Scholar 

  63. Agrawal K, et al. FDG PET/CT in detection of metastatic involvement of heart and treatment monitoring in non-Hodgkin’s lymphoma. World J Nucl Med. 2012;11:33–4.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Mato AR, et al. Primary cardiac lymphoma: utility of multimodality imaging in diagnosis and management. Cancer Biol Ther. 2007;6:1867–70.

    Article  PubMed  Google Scholar 

  65. Castelli JB, et al. Primary cardiac lymphoma detected by 18F-FDG PET scan: a case report. J Nucl Cardiol. 2011;18:974–7.

    Article  PubMed  Google Scholar 

  66. Makis W, et al. Cardiac T-cell lymphoma imaged with F-18 FDG PET-CT and correlative imaging. Clin Nucl Med. 2010;35:332–4.

    Article  PubMed  Google Scholar 

  67. Kim JH, et al. Non-small cell lung cancer initially presenting with intracardiac metastasis. Korean J Intern Med. 2005;20:86–9.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Orcurto MV, et al. Detection of an asymptomatic right-ventricle cardiac metastasis from a small-cell lung cancer by F-18-FDG PET/CT. J Thorac Oncol. 2009;4:127–30.

    Article  PubMed  Google Scholar 

  69. Plutchok JJ, et al. Differentiation of cardiac tumor from thrombus by combined MRI and F-18 FDG PET imaging. Clin Nucl Med. 1998;23:324–5.

    Article  CAS  PubMed  Google Scholar 

  70. Shimotsu Y, et al. Fluorine-18-fluorodeoxyglucose PET identification of cardiac metastasis arising from uterine cervical carcinoma. J Nucl Med. 1998;39:2084–7.

    CAS  PubMed  Google Scholar 

  71. Wenning C, et al. Therapy refractory coronary compression caused by a cardiac metastasis: the role of imaging. J Nucl Cardiol. 2010;17:696–8.

    Article  PubMed  Google Scholar 

  72. Biancheri I, et al. F-18 FDG PET identification of right atrium metastasis from a vesical carcinoma. Clin Nucl Med. 2007;32:812–5.

    Article  CAS  PubMed  Google Scholar 

  73. Chong GT, et al. Diagnosis of a solitary cardiac metastasis from ocular melanoma. J Thorac Cardiovasc Surg. 2005;130:1727–8.

    Article  PubMed  Google Scholar 

  74. Johnson TR, et al. Images in cardiovascular medicine. Detection of cardiac metastasis by positron-emission tomography-computed tomography. Circulation. 2005;112:e61–2.

    Article  PubMed  Google Scholar 

  75. Lu Y, Ulaner G. FDG PET/CT demonstration of right atrium metastasis overlooked on contrast-enhanced CT. Clin Nucl Med. 2011;36:405–6.

    Article  PubMed  Google Scholar 

  76. Pennell DJSUHC, et al. Clinical indications for cardiovascular magnetic resonance (CMR). Eur Heart J. 2004;25:1940–65.

    Article  PubMed  Google Scholar 

  77. Fussen S, et al. Cardiovascular magnetic resonance imaging for diagnosis and clinical management of suspected cardiac masses and tumours. Eur Heart J. 2011;32:1551–60.

    Article  PubMed  Google Scholar 

  78. Mohrs OK, et al. First experiences with contrast-enhanced first-pass MR perfusion imaging in patients with primary, benign cardiac masses and tumor-like lesions. Eur Radiol. 2008;18:1617–24.

    Article  PubMed  Google Scholar 

  79. Libicher M, et al. Dynamic contrast-enhanced MRI for evaluation of cardiac tumors. Eur Radiol. 2006;16:1858–9.

    Article  PubMed  Google Scholar 

  80. Bauner KU, et al. MR first pass perfusion of benign and malignant cardiac tumors-significant differences and diagnostic accuracy. Eur Radiol. 2012;22:73–82.

    Article  CAS  PubMed  Google Scholar 

  81. Luna A, et al. Diffusion-weighted imaging of the chest. Magn Reson Imaging Clin N Am. 2011;19:69–94.

    Article  PubMed  Google Scholar 

  82. Potet J, et al. Detection of myocardial edema with low-b-value diffusion-weighted echo-planar imaging sequence in patients with acute myocarditis. Radiology. 2013;269:362–9.

    Google Scholar 

  83. Okayama S, et al. Detection of infarct related myocardial edema using cardiac diffusion weighted magnetic resonance imaging. Int J Cardiol. 2009;133:20–1.

    Article  Google Scholar 

  84. Luna A, et al. Diffusion MRI outside the brain. Berlin: Springer; 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Restrepo, C.S., Tavakoli, S., Betancourt, S.L. (2014). Functional Imaging in Cardiac Tumors. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics