Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 821 Accesses

Abstract

Double ionization (NSDI) of atoms subject to ultrashort intense laser is a prototype model for the study of the three-body Coulomb problem intervened by the highly nonlinear interaction of electrons with a strong laser field. In this Chapter, we present some of its interesting aspects such as “knee” structure of double ionization yields, recollision threshold as well as some striking correlated electron momentum distributions, and provide insight into them with the help of semiclassical simulations based on classical trajectory ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fittinghoff, D.N., Bolton, P.R., Chang, B., Kulander, K.C.: Phys. Rev. Lett. 69, 2642 (1992)

    Article  ADS  Google Scholar 

  2. Walker, B., Sheehy, B., DiMauro, L.F., Agostini, P., Schafer, K.J., Kulander, K.C.: Phys. Rev. Lett. 73, 1227 (1994) [MEDLINE]

    Google Scholar 

  3. Sheehy, B., Lafon, R., Widmer, M., Walker, B., DiMauro, L.F., Agostini, P.A., Kulander, K.C.: Phys. Rev. A 58, 3942 (1998)

    Article  ADS  Google Scholar 

  4. Corkum, P.B.: Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  5. Liu, Y.Q., et al.: Phys. Rev. Lett. 101, 053001 (2008)

    Article  ADS  Google Scholar 

  6. Weber, Th, Giessen, H., Weckenbrock, M., Urbasch, G., Staudte, A., Spielberger, L., Jagutzki, O., Mergel, V., Vollmer, M., Dö rner, R.: Nature 405, 658 (2000)

    Google Scholar 

  7. Staudte, A., Ruiz, C., Schöffler, M., Schössler, S., Zeidler, D., Weber, Th, Meckel, M., Villeneuve, D.M., Corkum, P.B., Becker, A., Doörner, R.: Phys. Rev. Lett. 99, 263002 (2007)

    Article  ADS  Google Scholar 

  8. Fu, L.B., Liu, J., Chen, J., Chen, S.G.: Phys. Rev. A 63, 043416 (2001)

    Article  ADS  Google Scholar 

  9. Landau, L.D., Lifishitz, E.M. (ed.): Quantum mechanics. Pergamon, Oxford (1977)

    Google Scholar 

  10. Abrines, R., Percival, I.C.: Proc. Phys. Soc. London 88, 861 (1966)

    Google Scholar 

  11. Leopold, J.G., Percival, I.C.: J. Phys. B 12, 709 (1979)

    Google Scholar 

  12. Cohen, J.S.: Phys. Rev. A 26, 3008 (1982)

    Article  ADS  Google Scholar 

  13. Staudte, A., et al.: Phys. Rev. Lett. 99, 263002 (2007)

    Article  ADS  Google Scholar 

  14. Rudenko, A., et al.: Phys. Rev. Lett. 99, 263003 (2007)

    Article  ADS  Google Scholar 

  15. de Morisson Faria, C.F., et al.: Phys. Rev. A 69, 043405 (2004); ibid 69

    Google Scholar 

  16. de Morisson Faria C.F., et al.: J. Phys. B 38, 3251 (2005)

    Google Scholar 

  17. Parker, J.S., et al.: Phys. Rev. Lett. 96, 133001 (2006)

    Article  ADS  Google Scholar 

  18. Prauzner-Bechcicki, Jakub S., et al.: Phys. Rev. Lett. 98, 203002 (2007)

    Article  ADS  Google Scholar 

  19. Milosevic, D., Becker, W.: Phys. Rev. A 68, 065401 (2003)

    Article  ADS  Google Scholar 

  20. Ye, D.F., Liu, X., Liu, J.: Phys. Rev. Lett. 101, 233003 (2008)

    Article  ADS  Google Scholar 

  21. Berakdar, J., et al.: J. Phys. B 29, 6203 (1996)

    Article  ADS  Google Scholar 

  22. Ho, Phay J., et al.: Phys. Rev. Lett. 94, 093002 (2005)

    Google Scholar 

  23. The recollision time is defined as the instant when the two electrons get closest, while the DI time as that when both electron energy become greater than zero.

    Google Scholar 

  24. Haan, S.L., et al.: Phys. Rev. Lett. 97, 103008 (2006)

    Google Scholar 

  25. Paulus, G.G., et al.: J. Phys. B 27, L703 (1994)

    Article  ADS  Google Scholar 

  26. Weckenbrock, M., et al.: Phys. Rev. Lett. 92, 213002 (2004)

    Article  ADS  Google Scholar 

  27. Feuerstein, B., et al.: Phys. Rev. Lett. 87, 043003 (2001)

    Article  ADS  Google Scholar 

  28. Liu, X., et al.: J. Phys. B 39, L305 (2006)

    Article  ADS  Google Scholar 

  29. Liu, J., et al.: Phys. Rev. Lett. 99, 013003 (2007)

    Article  ADS  Google Scholar 

  30. Weber, Th, Giessen, H., Weckenbrock, M., et al.: Nature (Lond.) 405, 658 (2000)

    Article  ADS  Google Scholar 

  31. Staudte, A., Ruiz, C., Schöffler, M., et al.: Phys. Rev. Lett. 99, 263002 (2007)

    Google Scholar 

  32. Rudenko, A., de Jesus, V.L.B., Ergler, T., et al.: Phys. Rev. Lett. 99, 263003 (2007)

    Google Scholar 

  33. Haan, S.L., Smith, Z.S., Shomsky, K.N., Plantinga, P.W.: J. Phys. B 41, 211002 (2008)

    Article  ADS  Google Scholar 

  34. Bondar, D.I., Liu, W.-I.: Ivanov. Phys. Rev. A 79, 023417 (2009)

    Article  ADS  Google Scholar 

  35. Fu, L.-B., Liu, J., Chen, J., Chen, S.-G.: Phys. Rev. A 63, 043416 (2001)

    Google Scholar 

  36. Fu, L.-B., Liu, J., Chen, S.-G.: Phys. Rev. A 65, 021406(R) (2002)

    Google Scholar 

  37. Ye, D.-F., Liu, J.: Phys. Rev. A 81, 043402 (2010)

    Article  ADS  Google Scholar 

  38. Cohen, J.S.: Phys. Rev. A 64, 043412 (2001)

    Google Scholar 

  39. Dimitriou, K.I., Arbó, D.G., Yoshida, S., Persson, E., Burgdörfer, J.: Phys. Rev. A 70, 061401 (2004)

    Google Scholar 

  40. Guo, C., Li, M., Nibarger, J.P., Gibson Phys, G.N.: Rev. A 58, R4271 (1998)

    Article  Google Scholar 

  41. Cornaggia, C., Hering, Ph: Phys. Rev. A 62, 023403 (2000)

    Article  ADS  Google Scholar 

  42. Muth-Böhm, J., Becker, A., Faisal, F.H.M.: Phys. Rev. Lett. 85, 2280 (2000)

    Article  ADS  Google Scholar 

  43. Kjeldsen, T.K., Madsen, L.B.: J. Phys. B: At. Mol. Opt. Phys. 37, 2033 (2004)

    Article  ADS  Google Scholar 

  44. Alnaser, A.S., Voss, S., Tong, X.M., et al.: Phys. Rev. Lett. 93, 113003 (2004)

    Article  ADS  Google Scholar 

  45. Eremina, E., Liu, X., Rottke, H., et al.: Phys. Rev. Lett. 92, 173001 (2004)

    Article  ADS  Google Scholar 

  46. Zeidler, D., Staudte, A., Bardon, A.B., Villeneuve, D.M., Dörner, R., Corkum, P.B.: Phys. Rev. Lett. 95, 203003 (2005)

    Article  ADS  Google Scholar 

  47. Parker. J.S., et al.: J. Phys. B 34(3), L69–L78 (2001)

    Google Scholar 

  48. Pegarkov, A.I., Charron, E., Suzor-Weiner, A.: J. Phys. B 32, L691 (2000)

    Google Scholar 

  49. Becker, A., Faisal, F.H.M.: J. Phys. B 38, R1 (2005)

    Article  ADS  Google Scholar 

  50. Prauzner-Bechcicki, Jakub S., Sacha, Krzysztof, Eckhardt, Bruno, Zakrzewski, Jakub: Phys. Rev. A 71, 033407 (2005)

    Article  ADS  Google Scholar 

  51. The atomic ADK theory has been extended to diatomic molecules; see, for example, X. M. Tong et al., Phys. Rev. A 66 033402 (2002), and I. V. Litvinyuk et al., Phys. Rev. Lett. 90, 233003 (2003). However, we found that the employment of atomic ADK formula instead of the complicated molecular ADK formula does not lead to significant discrepancy in calculating the ratios between double and single ionization. So, for simplicity, we adopt \(\varpi (t_{0})=\frac{4(2I_{p1})^{2}}{\varepsilon (t_{0})}\exp (-\frac{2(2\left|I_{p1}\right|)^{3/2}}{3\varepsilon (t_{0})})\) in our calculations

    Google Scholar 

  52. Ye, D.F.., et al.: Phys. Rev. A 77, 013403 (2008)

    Google Scholar 

  53. Prauzner-Bechcicki, Jakub S., Sacha, Krzysztof, Eckhardt, Bruno, Zakrzewski, Jakub: Phys. Rev. A 71, 033407 (2005)

    Article  ADS  Google Scholar 

  54. Meng, L., Reinhold, C.O., Olson, R.E.: Phys. Rev. A 40, 3637 (1989)

    Article  ADS  Google Scholar 

  55. Eichenauer, D., Grün, N., Scheid, W.: J. Phys. B 14, 3929 (1981)

    Article  ADS  Google Scholar 

  56. Li, Y., Chen, J., Yang, S.P., Liu, J.: Phys. Rev. A 76, 023401 (2007)

    Article  ADS  Google Scholar 

  57. Fu, L.B., Xin, G.G., Ye, D.F., Liu, J.: Phys. Rev. Lett 108, 103601 (2012)

    Google Scholar 

  58. Walker, B., et al.: Phys. Rev. A 48, R894 (1993)

    Article  ADS  Google Scholar 

  59. Gillen, G.D., Walker, M.A., VanWoerkom, L.D.: Phys. Rev. A 64, 043413 (2001)

    Article  ADS  Google Scholar 

  60. Guo, C., Gibson, G.N.: Phys. Rev. A 63, 040701(R) (2001)

    Google Scholar 

  61. Wang, X., Eberly, J.H.: Phys. Rev. Lett. 105, 083001 (2010)

    Google Scholar 

  62. Mauger, F., Chandre, C., Uzer, T.: Phys. Rev. Lett. 105, 083002 (2010)

    Article  ADS  Google Scholar 

  63. Shvetsov-Shilovski, N.I., Goreslavski, S.P., Popruzhenko, S.V., Becker, W.: Phys. Rev. A 77, 063405 (2008)

    Article  ADS  Google Scholar 

  64. Gillen, G.D., Walker, M.A., Vanwoerkom, L.D.: Phys. Rev. A. 64, 043413 (2001)

    Article  ADS  Google Scholar 

  65. Szebehely, V.G.: In the retsricted three-body problem: the field term is replaced by the gravity potential of the second primary body. Theory of Orbits. Academic, New York (1967)

    Google Scholar 

  66. Haan, S.L., et al.: Phys. Rev. Lett. 97, 103008 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Liu, J. (2014). Double Ionization in Strong Laser Fields. In: Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields. SpringerBriefs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40549-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40549-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40548-8

  • Online ISBN: 978-3-642-40549-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics