Skip to main content

XYG3 Results for Some Selected Applications

  • Chapter
  • First Online:
A New-Generation Density Functional

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1962 Accesses

Abstract

In this chapter, some selected applications of the XYG3 functionals are described. In Sect. 4.1, a set of gas-phase reactions relevant to the Fischer–Tropsch synthesis has been constructed. With this set, we have tested the validity of the widely used PBE and B3LYP functionals, as well as XYG3. As gas-phase reactions and the corresponding surface reactions are related through the Born–Haber cycle, we argued that computational catalysis on surfaces will be less meaningful if gas-phase behaviors cannot first be suitably determined. In Sect. 4.2, we predict the heat formation of 5-chloromethylfurfural (CMF), which has been proposed as a central intermediate in the conversion of carbohydrate-based material into useful organic commodities. Using XYG3, the conversion from CMF to 5-Hydroxymethylfurfural (HMF) and levulinic acid (LA) in water, and that to biofuels 5-ethoxymethyl furfural (EMF) or ethyllevulinate (EL) in alcohol have been studied. New reaction mechanisms have been proposed, which complement the well-recognized Horvat’s mechanisms. In Sect. 4.3, we have reported the XYG3 results on the processes for d-glucose pyrolysis to acrolein. It has been shown that the most feasible reaction pathway starts from an isomerization from d-glucose to d-fructose, which then undergoes a cyclic Grob fragmentation, followed by a concerted electrocyclic dehydration to yield acrolein. This study provides the first mechanism based on theory that can account for the known experimental results. In Sect. 4.4, a non-fitting protein–ligand interaction scoring function has been introduced and applied to the screening of kinase inhibitors. A good correlation has been found between the calculated scores and the experimental inhibitor efficacies with the square of correlation coefficient R 2 of 0.88 when XYG3 is used to calculate the relative binding enthalpies in the gas phase. Such a good performance can only be achieved after proper treatment of the solvation effects, as well as the entropic effects on the relative binding affinities. This represents the first high-level theory based non-fitting scoring function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Somorjai GA, Li Y (2011) Impact of surface chemistry. Proc Natl Acad Sci USA 108:917–924. doi:10.1073/pnas.1006669107

    Article  CAS  Google Scholar 

  2. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108:937–943. doi:10.1073/pnas.1006652108

    Google Scholar 

  3. Jónsson H (2011) Simulation of surface processes. Proc Natl Acad Sci USA 108:944–949. doi:10.1073/pnas.1006670108

    Article  Google Scholar 

  4. Zhang IY, Xu X (2012) Gas-phase thermodynamics as a validation of computational catalysis on surfaces: a case study of Fischer-Tropsch synthesis. ChemPhysChem 13:1486–1494. doi:10.1002/cphc.201100909

    Article  CAS  Google Scholar 

  5. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. John Wiley, New York, p 444

    Google Scholar 

  6. Maitlis PM, Zanotti V (2009) The role of electrophilic species in the Fischer-Tropsch reaction. Chem Commun 1619–1634. doi:10.1039/b822320n

  7. Van der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev Sci Eng 41:255–318. doi:10.1081/CR-100101170

    Article  Google Scholar 

  8. Davis BH (2009) Fischer–Tropsch synthesis: reaction mechanisms for iron catalysts. Catal Today 141:25–33. doi:10.1016/j.cattod.2008.03.005

    Article  CAS  Google Scholar 

  9. Hindermann JP, Hutchings GJ, Kiennemann A (1993) Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation. Catal Rev Sci Eng 35:1–127. doi:10.1080/01614949308013907

    Article  CAS  Google Scholar 

  10. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) Assessment of Gaussian-3 and density functional theories for a larger experimental test set. J Chem Phys 112:7374–7383. doi:10.1063/1.481336

    Article  CAS  Google Scholar 

  11. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079. doi:10.1063/1.473182

    Article  CAS  Google Scholar 

  12. Wu JM, Xu X (2008) Improving the B3LYP bond energies by using the X1 method. J Chem Phys 129:164103–164111. doi:10.1063/1.2998231

    Article  Google Scholar 

  13. Olah GA, Molnár Á (2003) Hydrocarbon chemistry, 2nd edn. John Wiley, New Jersey

    Google Scholar 

  14. Inderwildi OR, Jenkins SJ (2008) In-silico investigations in heterogeneous catalysis-combustion and synthesis of small alkanes. Chem Soc Rev 37:2274–2309. doi:10.1039/b719149a

    Article  CAS  Google Scholar 

  15. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d

    Article  CAS  Google Scholar 

  16. Van Santen RA, Neurock M, Shetty SG (2010) Reactivity theory of transition-metal surfaces: a Bronsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem Rev 110:2005–2048. doi:10.1021/cr9001808

    Article  Google Scholar 

  17. Keim W (ed) (1983) Catalysis in C1 chemistry. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  18. Biloen P, Helle JN, Sachtler WMH (1979) Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: mechanistic implications. J Catal 58:95–107. doi:10.1016/0021-9517(79)90248-3

    Article  CAS  Google Scholar 

  19. Brady RC, Pettit R (1981) Mechanism of the Fischer-Tropsch reaction. The chain propagation step. J Am Chem Soc 103:1287–1289. doi:10.1021/ja00395a081

    Article  CAS  Google Scholar 

  20. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A-Gen 138:319–344. doi:10.1016/0926-860X(95)00306-1

    Article  CAS  Google Scholar 

  21. Ciobica IM, Kramer GJ, Ge Q et al (2002) Mechanisms for chain growth in Fischer-Tropsch synthesis over Ru(0001). J Catal 212:136–144. doi:10.1006/jcat.2002.3742

    Article  CAS  Google Scholar 

  22. Liu ZP, Hu P (2002) A new insight into Fischer-Tropsch synthesis. J Am Chem Soc 124:11568–11569. doi:10.1021/ja012759w

    Article  CAS  Google Scholar 

  23. Schulz H (2010) Advances in Fischer-Tropsch synthesis, catalysts, and catalysis. CRC Press, Taylor & Francis Group, Florida, p 165

    Google Scholar 

  24. Kummer JT, Emmett PH (1953) Fischer—Tropsch synthesis mechanism studies. The addition of radioactive alcohols to the synthesis gas. J Am Chem Soc 75:5177–5183. doi:10.1021/ja01117a008

    Article  CAS  Google Scholar 

  25. Chen J, Liu ZP (2008) Origin of selectivity switch in Fischer − Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies. J Am Chem Soc 130:7929–7937. doi:10.1021/ja7112239

    Article  CAS  Google Scholar 

  26. Cheng J, Hu P, Ellis P et al (2010) Some understanding of Fischer-Tropsch synthesis from density functional theory calculations. Top Catal 53:326–337. doi:10.1007/s11244-010-9450-7

    Article  CAS  Google Scholar 

  27. Liu G, Wu J, Zhang IY et al (2011) Theoretical studies on thermochemistry for conversion of 5-chloromethylfurfural into valuable chemicals. J Phys Chem A 115:13628–13641. doi:10.1021/jp207641g

    Article  CAS  Google Scholar 

  28. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem-Int Edit 47:7924–7926. doi:10.1002/anie.200801594

    Article  CAS  Google Scholar 

  29. NIST standard reference database number 69 (2011) http://webbook.nist.gov/chemistry Accessed 15 Aprl 2013

  30. Curtiss L, Redfern P, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108–084112. doi:10.1063/1.2436888

    Article  Google Scholar 

  31. Wu JM, Xu X (2007) The X1 method for accurate and efficient prediction of heats of formation. J Chem Phys 127:214105–214113. doi:10.1063/1.2800018

    Article  Google Scholar 

  32. Verevkin SP, Emel’yanenko VN, Stepurko EN et al (2009) Biomass-derived platform chemicals: thermodynamic studies on the conversion of 5-hydroxymethylfurfural into bulk intermediates. Ind Eng Chem Res 48:10087–10093. doi:10.1021/ie901012g

    Article  CAS  Google Scholar 

  33. Horvat J, Klaić B, Metelko B, Šunjić V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114. doi:10.1016/S0040-4039(00)94793-2

    Article  CAS  Google Scholar 

  34. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221. doi:10.1063/1.474671

    Article  CAS  Google Scholar 

  35. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. doi:10.1021/ef0502397

    Article  CAS  Google Scholar 

  36. Baker RR, Coburn S, Liu C (2006) The pyrolytic formation of formaldehyde from sugars and tobacco. J Anal Appl Pyrolysis 77:12–21. doi:10.1016/j.jaap.2005.12.009

    Article  CAS  Google Scholar 

  37. Talhout R, Opperhuizen A, van Amsterdam JGC (2006) Sugars as tobacco ingredient: effects on mainstream smoke composition. Food Chem Toxicol 44:1789–1798. doi:10.1016/j.fct.2006.06.016

    Article  CAS  Google Scholar 

  38. Paine JB, Pithawalla YB, Naworal JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 2. The pyrolysis of d-glucose: general disconnective analysis and the formation of C-1 and C-2 carbonyl compounds by electrocyclic fragmentation mechanisms. J Anal Appl Pyrolysis 82:10–41. doi:10.1016/j.jaap.2008.01.002

    Article  CAS  Google Scholar 

  39. Paine JB, Pithawalla YB, Naworal JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 3. The pyrolysis of d-glucose: formation of C-3 and C-4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms. J Anal Appl Pyrolysis 82:42–69. doi:10.1016/j.jaap.2007.12.005

    Article  CAS  Google Scholar 

  40. Paine JB, Pithawalla YB, Naworal JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling Part 4. The pyrolysis of d-glucose: the formation of furans. J Anal Appl Pyrolysis 83:37–63. doi:10.1016/j.jaap.2008.05.008

    Article  CAS  Google Scholar 

  41. Stein YS, Antal MJ Jr, Jones M Jr (1983) A study of the gas-phase pyrolysis of glycerol. J Anal Appl Pyrolysis 4:283–296. doi:10.1016/0165-2370(83)80003-5

    Article  CAS  Google Scholar 

  42. Nimlos MR, Blanksby SJ, Qian XH et al (2006) Mechanisms of glycerol dehydration. J Phys Chem A 110:6145–6156. doi:10.1021/jp060597q

    Article  CAS  Google Scholar 

  43. Abella L, Nanbu S, Fukuda K (2007) Memoris of the Faculty of Engineering. Kyushu University 67:67

    CAS  Google Scholar 

  44. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827. doi:10.1063/1.477924

    Article  CAS  Google Scholar 

  45. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39. doi:10.1038/nrc2559

    Article  Google Scholar 

  46. Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomolec Struct 27:249–284. doi:10.1146/annurev.biophys.27.1.249

    Article  CAS  Google Scholar 

  47. Li SY, Xi LL, Wang CQ et al (2009) A novel method for protein-ligand binding affinity prediction and the related descriptors exploration. J Comput Chem 30:900–909. doi:10.1002/jcc.21078

    Article  CAS  Google Scholar 

  48. Raha K, Merz KM (2004) A quantum mechanics-based scoring function: study of zinc ion-mediated ligand binding. J Am Chem Soc 126:1020–1021. doi:10.1021/ja038496i

    Article  CAS  Google Scholar 

  49. Grater F, Schwarzl SM, Dejaegere A et al (2005) Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics. J Phys Chem B 109:10474–10483. doi:10.1021/jp044185y

    Article  Google Scholar 

  50. Raha K, Peters MB, Wang B et al (2007) The role of quantum mechanics in structure-based drug design. Drug Discov Today 12:725–731. doi:10.1016/j.drudis.2007.07.006

    Article  CAS  Google Scholar 

  51. Hayik SA, Dunbrack R, Merz KM (2010) Mixed quantum mechanics/molecular mechanics scoring function to predict protein-ligand binding affinity. J Chem Theory Comput 6:3079–3091. doi:10.1021/ct100315g

    Article  CAS  Google Scholar 

  52. Rao L, Zhang IY, Guo W et al (2013) Nonfitting protein–ligand interaction scoring function based on first-principles theoretical chemistry methods: Development and application on kinase inhibitors. J Comput Chem 34:1636–1646. doi:10.1002/jcc.23303

    Article  CAS  Google Scholar 

  53. Guo WP, Wu AA, Xu X (2010) XO: An extended ONIOM method for accurate and efficient geometry optimization of large molecules. Chem Phys Lett 498:203–208. doi:10.1016/j.cplett.2010.08.033

    Article  CAS  Google Scholar 

  54. Guo WP, Wu AA, Zhang IY, Xu X (2012) XO: an extended ONIOM method for accurate and efficient modeling of large systems. J Comput Chem 33:2142–2160. doi:10.1002/jcc.23051

    Article  CAS  Google Scholar 

  55. Yang WT (1991) Direct calculation of electron density in density-functional theory. Phys Rev Lett 66:1438–1441. doi:10.1103/PhysRevLett.66.1438

    Article  CAS  Google Scholar 

  56. Svensson M, Humbel S, Froese RDJ et al (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363. doi:10.1021/jp962071j

    Article  CAS  Google Scholar 

  57. Stewart JJP (2007) Optimization of parameters for semiempirical methods V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. doi:10.1007/s00894-007-0233-4

    Article  CAS  Google Scholar 

  58. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. doi:10.1021/jp810292n

    Article  CAS  Google Scholar 

  59. Kumar R, Gururaj AE, Barnes CJ (2006) P21-activated kinases in cancer. Nat Rev Cancer 6:459–471. doi:10.1038/nrc1892

    Article  CAS  Google Scholar 

  60. Maksimoska J, Feng L, Harms K et al (2008) Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc 130:15764–15765. doi:10.1021/ja805555a

    Article  CAS  Google Scholar 

  61. Feng L, Geisselbrecht Y, Blanck S et al (2011) Structurally sophisticated octahedral metal complexes as highly selective protein kinase inhibitors. J Am Chem Soc 133:5976–5986. doi:10.1021/ja1112996

    Article  CAS  Google Scholar 

  62. Alzate-Morales J, Caballero J (2010) Computational study of the interactions between guanine derivatives and cyclin-dependent kinase 2 (CDK2) by CoMFA and QM/MM. J Chem Inf Model 50:110–122. doi:10.1021/ci900302z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Ying Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, I.Y., Xu, X. (2014). XYG3 Results for Some Selected Applications. In: A New-Generation Density Functional. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40421-4_4

Download citation

Publish with us

Policies and ethics