Skip to main content

A New Generation of Doubly Hybrid Density Functionals (DHDFs)

  • Chapter
  • First Online:
A New-Generation Density Functional

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Doubly hybrid density functionals (DHDFs) present a new generation of density functionals, which not only enfold a nonlocal orbital-dependent component (i.e., the Hartree-Fock-like exchange) in the exchange part, but also incorporate the information of unoccupied orbitals (i.e., the second-order perturbative correlation) in the correlation part. Different types of DHDFs have been proposed according to different philosophies. They could be empirical as multicoefficient methods to allow the mixing of wavefunction-based methods with the hybrid density functional methods in order to achieve a good compromise of accuracy, cost, and ease of use for practical calculations, or they have their roots in multideterminant extension of the Kohn-Sham scheme or Görling–Levy’s coupling-constant perturbative theory. In this chapter, we first introduce a classification of the current DHDFs (Sect. 2.1). We then, in Sect. 2.2, discuss the Levy constrained search approach and adiabatic connection formalism, which provide a formal route that the exchange-correlation functional can be pursued. Finally, the underlying physics for the B2PLYP-type DHDFs and the XYG3-type DHDFs is explored in Sects. 2.3 and 2.4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perdew JP, Ruzsinszky A, Tao JM et al (2005) Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. J Chem Phys 123:062201. doi:10.1063/1.1904565

    Article  Google Scholar 

  2. Furche F, Perdew JP (2006) The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J Chem Phys 124:044103. doi:10.1063/1.2162161

    Article  Google Scholar 

  3. Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys Rev B 15:2884–2901. doi:10.1103/PhysRevB.15.2884

    Article  Google Scholar 

  4. Langreth DC, Perdew JP (1980) Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys Rev B 21:5469–5493. doi:10.1103/PhysRevB.21.5469

    Article  Google Scholar 

  5. Furche F (2001) Molecular tests of the random phase approximation to the exchange-correlation energy functional. Phys Rev B 64:195120–195128. doi:10.1103/PhysRevB.64.195120

    Article  Google Scholar 

  6. Grüneis A, Marsman M, Harl J et al (2009) Making the random phase approximation to electronic correlation accurate. J Chem Phys 131:154115. doi:10.1063/1.3250347

    Article  Google Scholar 

  7. Ren X, Tkatchenko A, Rinke P, Scheffler M (2011) Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. Phys Rev Lett 106:153003–153004. doi:10.1103/PhysRevLett.106.153003

    Article  Google Scholar 

  8. Lie GC, Clementi E (1974) Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree-Fock density and its application to the hydrides of the second row atoms. J Chem Phys 60:1275–1287. doi:10.1063/1.1681192

    Article  CAS  Google Scholar 

  9. Savin A, Flad H-J (1995) Density functionals for the yukawa electron-electron interaction. Int J Quantum Chem 56:327–332. doi:10.1002/qua.560560417

    Article  CAS  Google Scholar 

  10. Gräfenstein J, Cremer D (2000) The combination of density functional theory with multi-configuration methods–CAS-DFT. Chem Phys Lett 316:569–577. doi:10.1016/S0009-2614(99)01326-3

    Article  Google Scholar 

  11. Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-functional theory. J Chem Phys 137:044104. doi:10.1063/1.4733672

    Article  Google Scholar 

  12. Zhao Y, Lynch BJ, Truhlar DG (2004) Doubly hybrid meta DFT: New multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics. J Phys Chem A 108:4786–4791. doi:10.1021/jp049253v

    Article  CAS  Google Scholar 

  13. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108–034116. doi:10.1063/1.2148954

    Article  Google Scholar 

  14. Zhang Y, Xu X, Goddard WA (2009) Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc Natl Acad Sci USA 106:4963–4968. doi:10.1073/pnas.0901093106

    Article  CAS  Google Scholar 

  15. Sharkas K, Toulouse J, Savin A (2011) Double-hybrid density-functional theory made rigorous. J Chem Phys 134:064113. doi:10.1063/1.3544215

    Article  Google Scholar 

  16. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  17. Becke AD (1996) Density-functional thermochemistry. 4. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046. doi:10.1063/1.470829

    Article  CAS  Google Scholar 

  18. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry. 3: The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  20. Fast PL, Sánchez ML, Truhlar DG (1999) Multi-coefficient Gaussian-3 method for calculating potential energy surfaces. Chem Phys Lett 306:407–410. doi:10.1016/S0009-2614(99)00493-5

    Article  CAS  Google Scholar 

  21. Curtiss LA, Redfern PC, Raghavachari K et al (1999) Gaussian-3 theory using reduced Møller-Plesset order. J Chem Phys 110:4703–4709. doi:10.1063/1.478385

    Article  CAS  Google Scholar 

  22. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  23. Sancho-García JC, Pérez-Jiménez AJ (2009) Assessment of double-hybrid energy functionals for pi-conjugated systems. J Chem Phys 131:084108–084111. doi:10.1063/1.3212881

    Article  Google Scholar 

  24. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  25. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular-energies of 1st-row and 2nd-row compounds. J Chem Phys 94:7221–7230. doi:10.1063/1.460205

    Article  CAS  Google Scholar 

  26. Curtiss LA, Raghavachari K, Redfern PC et al (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776. doi:10.1063/1.477422

    Article  CAS  Google Scholar 

  27. Harris J, Jones RO (1974) The surface energy of a bounded electron gas. J Phys F 4:1170–1186. doi:10.1088/0305-4608/4/8/013

    Article  Google Scholar 

  28. Langreth DC, Perdew JP (1975) The exchange-correlation energy of a metallic surface. Solid State Commun 17:1425–1429. doi:10.1016/0038-1098(75)90618-3

    Article  Google Scholar 

  29. Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13:4274–4298. doi:10.1103/PhysRevB.13.4274

    Article  CAS  Google Scholar 

  30. Görling A, Levy M (1993) Correlation-energy functional and its hight-density limit obtained from a coupling-constant perturbation expansion. Phys Rev B 47:13105–13113. doi:10.1103/PhysRevB.47.13105

    Article  Google Scholar 

  31. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) Assessment of Gaussian-3 and density functional theories for a larger experimental test set. J Chem Phys 112:7374–7383. doi:10.1063/1.481336

    Article  CAS  Google Scholar 

  32. Zhang IY, Wu J, Luo Y, Xu X (2010) Trends in R−X bond dissociation energies (R· = Me, Et, i-Pr, t-Bu, X· = H, Me, Cl, OH). J Chem Theory Comput 6:1462–1469. doi:10.1021/ct100010d

    Article  CAS  Google Scholar 

  33. Zhang IY, Luo Y, Xu X (2010) XYG3s: Speedup of the XYG3 fifth-rung density functional with scaling-all-correlation method. J Chem Phys 132:194105–194111. doi:10.1063/1.3424845

    Article  Google Scholar 

  34. Zhang IY, Wu JM, Xu X (2010) Extending the reliability and applicability of B3LYP. Chem Comm 46:3057–3070. doi:10.1039/c000677g

    Article  CAS  Google Scholar 

  35. Zhang IY, Wu J, Luo Y, Xu X (2011) Accurate bond dissociation enthalpies by using doubly hybrid XYG3 functional. J Comput Chem 32:1824–1838. doi:10.1002/jcc.21764

    Article  CAS  Google Scholar 

  36. Zhang IY, Xu X, Jung Y, Goddard WA (2011) A fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin ansatz. Proc Natl Acad Sci USA 108:19896–19900. doi:10.1073/pnas.1115123108

    Article  CAS  Google Scholar 

  37. Zhang IY, Xu X (2011) Doubly hybrid density functional for accurate description of thermochemistry, thermochemical kinetics and nonbonded interactions. Int Rev Phys Chem 30:115–160. doi:10.1080/0144235X.2010.542618

    Article  Google Scholar 

  38. Liu G, Wu J, Zhang IY et al (2011) Theoretical studies on thermochemistry for conversion of 5-Chloromethylfurfural into valuable chemicals. J Phys Chem A 115:13628–13641. doi:10.1021/jp207641g

    Article  CAS  Google Scholar 

  39. Shen C, Zhang IY, Fu G, Xu X (2011) Pyrolysis of D-Glucose to Acrolein. Chin J Chem Phys 24:249–252. doi:10.1088/1674-0068/24/03/249-252

    Article  CAS  Google Scholar 

  40. Zhang IY, Su NQ, Brémond ÉAG et al (2012) Doubly hybrid density functional xDH-PBE0 from a parameter-free global hybrid model PBE0. J Chem Phys 136:174103. doi:10.1063/1.3703893

    Article  Google Scholar 

  41. Zhang IY, Xu X (2012) Gas–Phase thermodynamics as a validation of computational catalysis on surfaces: A case study of Fischer–Tropsch synthesis. ChemPhysChem 13:1486–1494. doi:10.1002/cphc.201100909

    Article  CAS  Google Scholar 

  42. Zhang IY, Xu X (2012) XYG3 and XYGJ-OS performances for noncovalent binding energies relevant to biomolecular structures. Phys Chem Chem Phys 14:12554. doi:10.1039/c2cp40904f

    Article  CAS  Google Scholar 

  43. Levy M (1979) Universal variational functionals of electron densities, 1st-order density matrices, and natural spin-orbitals and solution of the V-representability problem. Proc Natl Acad Sci USA 76:6062–6065. doi:10.1073/pnas.76.12.6062

    Article  CAS  Google Scholar 

  44. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864–B871. doi:10.1103/PhysRev.136.B864

    Article  Google Scholar 

  45. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343. doi:10.1103/PhysRev.56.340

    Article  CAS  Google Scholar 

  46. Levy M, Perdew JP (1985) Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys Rev A 32:2010–2021. doi:10.1103/PhysRevA.32.2010

    Article  CAS  Google Scholar 

  47. Levy M (1983) Density Functional Theory. Springer, New York

    Google Scholar 

  48. Perdew JP, Emzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985. doi:10.1063/1.472933

    Article  CAS  Google Scholar 

  49. Mori-Sánchez P, Cohen AJ, Yang WT (2006) Self-interaction-free exchange-correlation functional for thermochemistry and kinetics. J Chem Phys 124:091102. doi:10.1063/1.2179072

    Article  Google Scholar 

  50. Toulouse J, Colonna F, Savin A (2004) Long-range–short-range separation of the electron-electron interaction in density-functional theory. Phys Rev A 70:062505. doi:10.1103/PhysRevA.70.062505

    Article  Google Scholar 

  51. Ángyán J, Gerber I, Savin A, Toulouse J (2005) van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections. Phys Rev A 72:012510–012519. doi:10.1103/PhysRevA.72.012510

    Article  Google Scholar 

  52. Levy M, Yang WT, Parr RG (1985) A new functional with homogeneous coordinate scaling in density functional theory: F [ρ, λ]. J Chem Phys 83:2334–2336. doi:10.1063/1.449326

    Article  CAS  Google Scholar 

  53. Levy M (1991) Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole. Phys Rev A 43:4637–4646. doi:10.1103/PhysRevA.43.4637

    Article  CAS  Google Scholar 

  54. Szabo A, Ostlund NS (1982) Modern quantum chemistry. MacMillan, New York

    Google Scholar 

  55. Levy M, Perdew JP (1993) Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formal tests of generalized-gradient approximations. Phys Rev B 48:11638–11645. doi:10.1103/PhysRevB.48.11638

    Article  CAS  Google Scholar 

  56. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  57. Fromager E, Jensen HJA (2008) Self-consistent many-body perturbation theory in range-separated density-functional theory: A one-electron reduced-density-matrix-based formulation. Phys Rev A 78:022504. doi:10.1103/PhysRevA.78.022504

    Article  Google Scholar 

  58. Karton A, Tarnopolsky A, Lamere JF et al (2008) Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J Phys Chem A 112:12868–12886. doi:10.1021/jp801805p

    Article  CAS  Google Scholar 

  59. Tarnopolsky A, Karton A, Sertchook R et al (2008) Double-hybrid functionals for thermochemical kinetics. J Phys Chem A 112:3–8. doi:10.1021/jp710179r

    Article  CAS  Google Scholar 

  60. Graham D, Menon A, Goerigk L et al (2009) Optimization and basis-set dependence of a restricted-open-shell form of B2-PLYP double-hybrid density functional theory. J Phys Chem A 113:9861–9873. doi:10.1021/jp9042864

    Article  CAS  Google Scholar 

  61. Chai J-D, Head-Gordon M (2009) Long-range corrected double-hybrid density functionals. J Chem Phys 131:174105. doi:10.1063/1.3244209

    Article  Google Scholar 

  62. Becke AD (1997) Density-functional thermochemistry. 5. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554–8560. doi:10.1063/1.475007

    Article  CAS  Google Scholar 

  63. Zhang IY (2011) A new generation density functional towards chemical accuracy. Doctorial thesis, KTH, Stockholm

    Google Scholar 

  64. Goerigk L, Grimme S (2011) Efficient and Accurate Double-hybrid-meta-GGA density functionals—Evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7:291–309. doi:10.1021/ct100466k

    Article  CAS  Google Scholar 

  65. Benighaus T, DiStasio RA, Lochan RC et al (2008) Semiempirical double-hybrid density functional with improved description of long-range correlation. J Phys Chem A 112:2702–2712. doi:10.1021/jp710439w

    Article  CAS  Google Scholar 

  66. Kozuch S, Gruzman D, Martin JML (2010) DSD-BLYP: A general purpose double hybrid density functional including spin component scaling and dispersion correction. J Phys Chem C 114:20801–20808. doi:10.1021/jp1070852

    Article  CAS  Google Scholar 

  67. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063. doi:10.1021/cr1000173

    Article  CAS  Google Scholar 

  68. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406. doi:10.1039/b704725h

    Article  CAS  Google Scholar 

  69. Wu Q, Yang WT (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116:515–524. doi:10.1063/1.1424928

    Article  CAS  Google Scholar 

  70. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  71. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. doi:10.1063/1.3382344

    Article  Google Scholar 

  72. Klimeš J, Michaelides A (2012) Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137:120901. doi:10.1063/1.4754130

    Article  Google Scholar 

  73. Grimme S (2006) Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. Angew Chem–Int Edit 45:4460–4464. doi:10.1002/anie.200600448

  74. Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys 99:607–615. doi:10.1080/00268970010023435

    Article  CAS  Google Scholar 

  75. Levy M, March NH, Handy NC (1996) On the adiabatic connection method, and scaling of electron–electron interactions in the Thomas–Fermi limit. J Chem Phys 104:1989–1992. doi:10.1063/1.470954

    Article  CAS  Google Scholar 

  76. Frisch MJ, et al. (2003) Gaussian 03, revision A. 1. Gaussian, Inc, Pittsburgh

    Google Scholar 

  77. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101. doi:10.1063/1.2370993

    Article  Google Scholar 

  78. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  79. Zhang IY, Xu X (2012) A new generation density functional XYG3. Prog Chem 24:1023–1037

    Google Scholar 

  80. Slater JC (1960) Quantum theory of atomic structure, vol 2. McGraw-Hill, New York

    Google Scholar 

  81. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation endergies for local spin-density calculations–a critical analysis. Can J Phys 58:1200–1211. doi:10.1139/p80-159

    Article  CAS  Google Scholar 

  82. Gorling A, Levy M (1994) Exact Kohn-Sham scheme based on perturbation theory. Phys Rev A 50:196–204. doi:10.1103/PhysRevA.50.196

    Article  Google Scholar 

  83. Casida ME (1995) Generalization of the optimized-effective-potential model to include electron correlation: A variational derivation of the Sham-Schlüter equation for the exact exchange-correlation potential. Phys Rev A 51:2005–2013. doi:10.1103/PhysRevA.51.2005

    Article  CAS  Google Scholar 

  84. Ivanov S, Bartlett RJ (2001) An exact second-order expression for the density functional theory correlation potential for molecules. J Chem Phys 114:1952–1955. doi:10.1063/1.1342809

    Article  CAS  Google Scholar 

  85. Ivanov S, Levy M (2002) Accurate correlation potentials from integral formulation of density functional perturbation theory. J Chem Phys 116:6924–6929. doi:10.1063/1.1453952

    Article  CAS  Google Scholar 

  86. Mori-Sánchez P, Wu Q, Yang WT (2005) Orbital-dependent correlation energy in density-functional theory based on a second-order perturbation approach: Success and failure. J Chem Phys 123:062204. doi:10.1063/1.1904584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Ying Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, I.Y., Xu, X. (2014). A New Generation of Doubly Hybrid Density Functionals (DHDFs). In: A New-Generation Density Functional. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40421-4_2

Download citation

Publish with us

Policies and ethics